2010 Technological Studies

Intermediate 2

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA’s External Print Team, Centre Services at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Section A

1. (a)
(i) $\quad \mathbf{Z}=(\overline{\mathbf{A}} \cdot \overline{\mathbf{B}})+(\mathbf{A} \cdot \mathbf{B})$
1 mark 1 mark (including oring function)
(ii)

3 marks
(b) (i) Affected by static electricity or any other relevant answer
(ii) Integrated circuit
2. (a) (i) Diaphragm $\mathbf{3} / \mathbf{2}$ valve spring return
(ii)

Port	Connection
1	Main air
2	Output port
3	Exhark
1 mark	

2 marks
2. (continued)
(b) (i)

$$
\begin{array}{rlr}
\text { Area } & =\frac{\pi d^{2}}{4} & \frac{3 \cdot 14 \times 25^{2}}{4} \\
& =490.6 \mathrm{~mm}^{2} & \\
\text { Area } & =\frac{\pi d^{2}}{4} & 1 \text { mark } \\
& =19.6 \mathrm{~mm}^{2} & \\
& & \\
& & 1 \text { mark }
\end{array}
$$

$$
\text { Area }_{\text {eff }}=\quad 490.6-19.6
$$

$$
=\quad 471 \mathrm{~mm}^{2} \quad 1 \text { mark (answer from given working) }
$$

(ii) $\mathbf{F}=\mathbf{P A}$
$=0.6 \times 471 \quad 1$ mark (allow FTE)
$=\quad 282 \cdot 6 \mathrm{~N}$
1 mark (answer from given working)
2 marks
Total 8 marks
3. (a) Ep $=$ mgh

$$
\begin{array}{ll}
= & 75 \times 9.81 \times 10 \\
= & 7357.5 \mathrm{~J}
\end{array}
$$

1 mark
1 mark (answer from given working)
2 marks
(b) (i) $\mathbf{h}=\frac{\mathbf{E}_{\mathbf{p}}}{\mathbf{m g}}$
$\begin{array}{lll}= & \frac{7700}{75 \times 9.81} & \\ = & 1 \text { mark } \\ & \begin{array}{ll}10.47 \mathrm{~m}\end{array} & 1 \text { mark (answer from given working) }\end{array}$
2 marks
(ii) Force in legs/ $\left\{\begin{array}{l}\text { strain energy } \\ \text { or } \\ \text { kinetic energy }\end{array}\right\} 1$ mark

2 marks
(c) (i) $0 \mathbf{J}$
(ii) $7 \cdot 7 \mathbf{~ k J}$

1 mark
2 marks
Total 8 marks
4. (a)darkness is sensed. This sends a signal to the control unit which will activate the output driver switching on the fan and heater. When the hands are removed the fan and heater will switch off.

1 mark for each relevant statement $\mathbf{3}$ marks
(b) System boundary on correct place (enclosing subsystem but not in/outputs) showing as a broken line

1 mark
(c) (i) Open loop 1 mark
(ii) No feedback etc 1 mark 2 marks
(d) 1 LDR

2 (variable) resistor/pot 1 mark 2 marks
(e) Transistor/MOSFET 1 mark
5. (a) (i) $\mathbf{R}_{\mathbf{T}}=\frac{\mathbf{R}_{1} \times \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}$
$=\quad \frac{6 \cdot 8 \times 3 \cdot 4}{6 \cdot 8+3 \cdot 4} \quad 1$ mark
$=\frac{23 \cdot 12}{10 \cdot 2}$
$=\quad 2.27 \mathrm{k} \Omega$
1 mark (answer from given working)
2 marks
(ii) $\mathbf{R}=\mathbf{2 . 2 7}+\mathbf{5 . 6}$
$=\quad 7.87 \mathrm{k} \Omega \quad 1$ mark (allow for FTE)
1 mark
$\begin{array}{lll}\text { (b) } & \text { (i) } & \left.\begin{array}{ll}\mathbf{A}_{2} & \mathbf{1 . 5 m A} \\ & \\ \mathbf{A}_{\mathbf{3}} & \mathbf{2 . 2 5 m A}\end{array}\right]\end{array}$
1 mark
1 mark (allow for FTE) 2 marks
(ii) $\mathbf{V}=\mathbf{I R}$
$=\quad 2.25 \mathrm{~mA} \times 7.87 \mathrm{k} \Omega \quad 1$ mark
$=17 \cdot 7 \mathrm{~V} \quad 1$ mark (answer from given working) $\quad 2$ marks
Total 7 marks
$\begin{array}{ll}\text { let dirs }=\% 11110000 & 1 \mathrm{mark} \\ \text { high } 6 \text { or let pins }=\% 11000000 & 1 \mathrm{mark} \\ \text { let pins }=\% 10100000 & 1 \mathrm{mark} \\ \text { let pins }=0 & 1 \mathrm{mark} \\ \text { for counter }=1 \text { to } 10 & 1 \mathrm{mark} \\ \text { next counter } & 1 \mathrm{mark} \\ \text { goto main } & 1 \mathrm{mark}\end{array}$

Total 7 marks
7. (a) $\quad 25^{\circ} \mathrm{C}$
(b) (i) $\quad \mathbf{V}_{\text {sig }}=\frac{\mathbf{R}}{\mathbf{R}_{\mathbf{T}}} \times \mathbf{V}_{\mathbf{C C}}$

$$
V_{b}=\frac{1}{6} \times 5 \quad 1 \text { mark }
$$

$=0.83 \mathrm{~V} \quad 1$ mark (answer from given working) $\quad 2$ marks
$\begin{array}{llll}\text { (ii) } & \begin{array}{lll}\text { On } & 1 \text { mark (allow FTE) } \\ \text { Transistor in saturation/above } 0.7 \mathrm{~V}\end{array} & \mathbf{1} \text { mark } & \mathbf{2} \text { marks }\end{array}$
(c) $\quad \mathbf{h}_{\mathrm{FE}}=\frac{\mathbf{I}_{\mathrm{c}}}{\mathbf{I}_{\mathrm{b}}} \quad \mathbf{I}_{\mathrm{c}}=\mathbf{h}_{\mathrm{FE}} \times \mathbf{l}_{\mathrm{b}}$

$$
\begin{array}{ll}
=100 \times 50 \mu \mathrm{~A} & 1 \mathrm{mark} \\
=5 \mathrm{~mA} & 1 \mathrm{mark} \text { (answer from given working) }
\end{array}
$$

2 marks
(d) Emitter
8. (a) Compound gear

1 mark
(b) (i)

$$
V R \quad=\quad \frac{V_{\text {in }}}{V_{\text {out }}}=\quad \frac{2250}{150} \mathrm{rev} / \mathrm{min} \mathrm{rev} / \mathrm{min}
$$

15:1
1 mark
(ii) $\quad \mathbf{G}_{\mathbf{R}}=\frac{\mathbf{G}_{\text {OUT }}}{\mathbf{G}_{\text {IN }}}=\frac{\mathbf{6 0}}{12}=$

5:1
1 mark
(iii) $\mathbf{G}_{\mathrm{RCD}}=\frac{\mathbf{1 5}}{5}=3$

1 mark (allow FTE)
D $=45 \times 3$
D = 135 teeth 1 mark 2 marks
(c) - less friction

- quieter
- less lubrication required etc
- lighter

Section B

9.

(a) if pin $2=0$ then main
1 mark low 4
1 mark
if pin $2=1$ then label 1
1 mark
pause 100
1 mark
next counter
1 mark
gosub motorback
1 mark
goto main
1 mark
return 1 mark

1 mark per correct PBASIC line
8 marks
(b) $250 \times 0 \cdot 1=\mathbf{2 5}$ seconds
(accept 29 seconds)
1 mark
(c) (i)

(ii) No change in output torque

1 mark
(d)

1 mark All forces
1 mark All sizes
2 marks
(e)

(i)	$\begin{aligned} & \Sigma \mathbf{C W M} \\ & \left(\mathbf{R}_{\mathrm{A}} \times 2\right) \end{aligned}$	=	$\Sigma \mathrm{ACWM}$ $(100 \times 1 \cdot 5)+(3$	$350 \times 0.5)$	1 mark
	$\mathbf{R}_{\text {A }} \times 2$	=	$150+175$		
	RA	=	$\frac{325}{2}$		1 mark
		=	162.5 N	1 mark (from
(ii)	$\Sigma \mathbf{F}_{\mathbf{V}}=$	0			
			$\mathrm{R}_{\mathrm{B}}-100-650$		(allow
	$\mathbf{R}_{\text {B }} \quad=$				

10. (a) (i) $\mathbf{h}_{\mathrm{FE}}=\frac{\mathbf{l}_{\mathbf{c}}}{\mathbf{l}_{\mathrm{b}}}$

$$
\begin{aligned}
& \text { Ib }=\frac{l_{c}}{h_{\text {FE }}} \\
&=\frac{0 \cdot 2}{150} \quad 1 \text { mark } \\
&=0 \cdot 0013 \mathrm{~A} \\
& 1 \text { mark (answer from given working) }
\end{aligned}
$$

(ii) $\mathbf{V}=\mathbf{I R}$ $=\quad 0.0013 \times 220 \quad 1$ mark (allow FTE)
$=0.29 \mathrm{~V} \quad 1$ mark (answer from given working)
2 marks
(iii) $\mathrm{V}_{1}=0 \cdot 29+0 \cdot 7 \quad 1$ mark (allow FTE)
$=\quad 0.99 \mathrm{~V} \quad 1$ mark (answer from given working)
2 marks
(b) 600Ω

1 mark
(c) Change fixed resistor for variable.

1 mark
(d) (i) Diode

1 mark
(ii) Protect Transistor (from back EMF)

1 mark
(e) (i) Single Pole Double Throw

1 mark
(ii) Low voltage electronic circuit cannot directly switch on solenoid rated $\mathbf{1 2 V}$
etc
(f) (1) Solenoid, 3/2 valve, spring return

1 mark
(2) Pilot $\mathbf{5} / \mathbf{2}$ valve spring return
(g)

10. (continued)

$$
\text { (h) } \begin{aligned}
A & =\frac{F}{P}=\frac{150}{0 \cdot 5} & & \\
& =300 \mathrm{~mm}^{2} & & 1 \text { mark } \\
d & =\sqrt{\frac{300 \times 4}{3 \cdot 14}} & & 1 \text { mark } \\
d & =19 \cdot 5 \mathrm{~mm} & & 1 \text { mark (answer from given working) }
\end{aligned}
$$

(i) Increased force
11.

10. (continued)
(d)

1 mark for each gate connected (3 marks) 1 mark for power
(e)

(i)	Hex Inverter
Quad 2 input AND gate	

1 mark
1 mark
(ii) TTL/Transistor/transistor logic
(iii) Not destroyed by static etc (allow FTE from (ii))

