2009 Technological Studies

Intermediate 2

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

SECTION A

1. (a) 1

Lever operated, $\mathbf{5 / 2}$ valve, spring return
1 mark
2 Double acting cylinder
1 mark
2 marks
(b) (i) Unidirectional restrictor

1 mark
(ii)

allow FTE
1 mark
(iii) Restricting exhaust air (outstroking)

1 mark
(c) No electricity near water etc

1 mark
(d) Check piping etc

(a)	Brain of microcontroller	1 mark
Keeps all the sub-systems working in time together	$\mathbf{1}$ mark	
Connects microcontroller to 'real' world	1 mark	

(b) (i) Electronic Erasable Programmable Read Only Memory
(ii) Program lost on power down / Volatile

1 mark
(c) (i) $\mathbf{5 , 3 , 2}$

1 mark
(ii) Binary value

1 mark
3.
(a) Hex Invertor 1 mark

Quad 2 Input OR Gate
1 mark
(b) (i)

(ii) $\mathbf{Z}=\overline{(\mathbf{A}} \circ \mathbf{B})+\mathbf{C}$

1 mark	1 mark Inverting A AND B	1 mark ANDing A and B	ORing A and B

4. (a) (i) $\mathbf{E k}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m v}^{\mathbf{2}}$
$=\quad \frac{1}{2} \times 70 \times 6^{2} \quad 1$ mark
$=1260 \mathrm{~J} \quad 1$ mark answer from given working
(ii) $\mathbf{E k}=\mathbf{E}_{\mathrm{p}}$

1 mark
$\mathbf{E}_{\mathrm{p}} \quad=\quad 1260=m \mathrm{gh} \quad$ (allow FTE)
$1260=70 \times 9.81 \times h \quad 1$ mark
h $=\frac{1260}{70 \times 9.81}$
$=\quad 1.8 \mathrm{~m} \quad 1 \mathrm{mark}$ answer from given working
(b) Loss of energy ($\mathbf{1} \mathbf{m a r k}$) as a result of heat/friction (1 mark)
5. (a) More current through/voltage across lamp (3)
(b) (i)

$$
\begin{array}{rlrl}
\mathbf{R}_{\mathrm{T}}=\quad \frac{\mathbf{R}_{1} R_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} & =\frac{100 \times 100}{100+100} & & 1 \text { mark } \\
& =50 \Omega & \begin{array}{c}
1 \text { mark answer from } \\
\text { given working }
\end{array}
\end{array}
$$

(ii) $\mathbf{5 0 \Omega} \mathbf{\Omega} \mathbf{1 0 0} \Omega=150 \Omega \quad$ (allow FTE)
(iii) $\mathbf{V}_{\mathbf{1}}=\mathbf{I R}$
$=\quad 0.03 \times 100$
$=3 \mathrm{~V} \quad 1$ mark answer from given working
$\mathbf{V}_{3}=$ IR
$=\quad 0.06 \times 100$
$=6 \mathbf{V} \quad 1$ mark answer from given working
$V_{S}=3+6$
$=9 \mathbf{V}$
1 mark answer from given working
(c) $20.09 \mathrm{~W} \quad 1$ mark

$$
\text { (3) } \begin{aligned}
\mathrm{P} & =6 \times 0.06 & & 1 \text { mark } \\
& =0.36 \mathrm{~W} & & 1 \text { mark answer from given working }
\end{aligned}
$$

6.

(a) | if pin $0=1$ then pump on |
| :--- |
| if pin $1=0$ then pump off |
| pause 10000 |
| high 5 |
| goto main |

1 mark
1 mark
1 mark
1 mark
1 mark
(b) for ... next loop (for counter $=1$ to $10 \ldots .$. next counter)
(c) (description) easier to change operation/upgrades

5 marks
1 mark
1 mark
Total 7 marks
7.

(b) Desire temperature level is set. Error detector compares desired level with actual level from temperature sensor. If error exists, output driver switches on the heater. As temperature rises, error is reduced until later switched off.

1 mark for each relevant statement
3 marks
1 mark
1 mark
Total 6 marks
8. (a)

All forces with directions	$\begin{array}{l}1 \text { mark } \\ \text { All sizes }\end{array}$
1 mark	

2 marks
(b) (i) $\boldsymbol{\Sigma}$ clockwise moments $=\boldsymbol{\Sigma}$ anti clockwise moments

$$
\begin{array}{rlrl}
\mathbf{R}_{\mathrm{A}} \times 2 \cdot 5 & =(\mathbf{1 2 0 \times 1})+(120 \times 2) & 1 \text { mark } \\
& \mathbf{R}_{\mathrm{A}} & =\frac{360}{2 \cdot 5} & \\
& =144 \mathrm{~N} & \begin{array}{c}
1 \text { mark } \\
\text { given working }
\end{array} & \\
& & & 3 \text { marks } \\
\text { (ii) } & \Sigma \mathbf{F}_{\mathbf{V}} & =0 & 1 \text { mark (allow FTE) }
\end{array}
$$

Total 7 marks

SECTION B

9.

(a) (i) Open loop

1 mark
(ii) No feedback
(iii)

1 mark
(b)

$$
\begin{aligned}
\mathbf{V}_{\mathbf{1}} & =\frac{\mathbf{R}}{\mathbf{R}_{\text {TOTAL }}} \times \mathbf{V}_{\mathbf{C C}} \\
& =\frac{5000}{55000} \times 5 \\
& =0.45 \mathrm{~V}
\end{aligned}
$$

$$
1 \text { mark }
$$

$$
1 \text { mark }
$$

1 mark answer from given working
(c) (i) $\quad \mathrm{V}=\mathbf{1 . 5 - 0 . 7}$

1 mark
$=0.8 \mathrm{~V} \quad 1$ mark
(ii) $\quad \mathbf{I}_{\mathbf{b}}=\frac{\mathbf{V}}{\mathbf{R}}$
$=\frac{0 \cdot 8}{1000} \quad 1 \operatorname{mark}($ allow FTE)
$=0.0008 \mathrm{~A} \quad 1$ mark (answer from given working) $\quad 2$ marks
(iii) $\mathbf{I}_{\mathbf{c}}=\mathbf{h}_{\mathrm{FE}} \times \mathbf{l}_{\mathbf{b}}$
$=100 \times 0.0008 \quad$ (allow FTE)
$=0.08 \mathrm{~A} \quad$ (answer from given working) 1 mark
(d) Double Pole Double Throw (DTDP)
(e) Compound gear
(f) Clockwise
(g) $\frac{\text { Driven }}{\text { Driver }} \times \frac{\text { Driven }}{\text { Driver }}$

1 mark $-\frac{80}{30} \times \frac{50}{10}-1$ mark
2.67×5
13.35:1 1 mark

Output speed:-
$\frac{2000}{13 \cdot 35}=145 \cdot 8 \mathrm{rev} / \mathrm{min} \quad 1 \mathrm{mark}$ (answer from given working) 4 marks
(h) (i) Turning force etc 1 mark
(ii) Larger output gear or smaller input gear 1 mark
10.

(a) | let pins | $=0$ | 1 mark |
| :--- | :--- | :--- |
| if pin 0 | $=0$ | then main |
| let pins | $=\mathbf{1}$ mark | |
| pause 5000 | | 1 mark |
| low 7 | | 1 mark |
| | | 1 mark |

(b)

(c) Use existing programs/quicker development etc
(d) $\quad \mathbf{E}_{\mathrm{s}}=\frac{1}{2} \mathbf{F} \boldsymbol{x}$ 1 mark
$1000=\frac{1}{2} \times F \times 0 \cdot 5$
1 mark
$F=\frac{1000}{\left(\frac{1}{2} \times 0 \cdot 5\right)}$
$F=4$ kN $\quad 1$ mark (answer from given working)
(e) $\mathbf{2 5} \times \mathbf{9 . 8 1}$

Child A $=245.25 \mathrm{~N} \quad 1$ mark
35×9.81
Child B $=343.35 \mathrm{~N} \quad 1$ mark
2 marks
(f) (i) CWM $=343 \times 0.9$

$$
=308.7 \mathrm{Nm} \quad 1 \operatorname{mark}(\text { allow FTE })
$$

$\mathrm{ACWM}=245 \times 1.5$
$=367.5 \mathrm{Nm} \quad 1 \mathrm{mark}$ (allow FTE)
2 marks
(ii) Down / anticlockwise

1 mark
(g) Equilibrium

1 mark
Total 20 marks
11.
(a) A: Potential 1 mark
(B): Kinetic
1 mark
(C): Electrical 1 mark

3 marks
(b) Wind, solar, tidal, wave, geo-thermal, etc

1 mark per suitable source
(c) Valve B is activated or if valve A has been activated, pilot air will activate valve F via shuttle valve E. Valve F will cause Gate 1 to outstroke activating valve D which will send a signal to valve G. When valve G is activated it will oustroke Gate 2. When valve C is activated it will instroke both Gates 1 and 2.

1 mark for each correct statement
(d) (i)

1 mark for each correct gate.
(ii)

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{A} \cdot \mathbf{B}$	$\mathbf{B} \cdot \overline{\mathbf{C}}$	\mathbf{Z}
0	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0	1	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
0	1	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	1	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
1	1	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

(e) (i) $\mathbf{T T T}$
(ii) 1: Not affected by static electricity

2: Works from 5 V etc
1 mark for each correct statement
Allow FTE for column \mathbf{Z}

