2013 Technological Studies

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Technological Studies Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Question		Mark Allocation		Marks	
4.	a b c	(i) $\mathrm{I}_{100}=\mathrm{V} / \mathrm{R}=11 \cdot 3 / 100=0 \cdot 113 \mathrm{~mA}$ (ii) $\begin{aligned} \mathrm{I}_{\mathrm{th}}=\mathrm{V} / \mathrm{R} & =0.7 / 8 \\ = & 0.0875 \mathrm{~mA} \end{aligned}$ (iii) $\mathrm{I}_{\mathrm{b}}=0.113-0.0875=0.0255 \mathrm{~mA}$ $\mathrm{h}_{\mathrm{FE}}=1000 / 0 \cdot 0255=39200$	(substitution 1 ; answer including unit 1) ($8 \mathrm{k} \Omega$ from data book 1 ; substitution 1) (answer including unit 1) (answer including unit 1) (substitution 1; answer including unit 1) transistor A first transistor C second first emitter to second base collectors connected	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	3 1 2 4 (12)
5.		main: if pin $0=0$ then delay test1: if pin5 $=0$ then main gosub wiper goto main delay: if pin $1=0$ then wash pause 1500 gosub wiper goto delay wash: if pin $2=0$ then main high 6 again: gosub wiper if $\operatorname{pin} 2=1$ then again low 6 for $\mathrm{b} 0=1$ to 5 gosub wiper next b0 goto main	1 mark condition; 1 destination 1 mark condition; 1 destination 1 mark for all four gosub wiper 1 mark for both goto main 1 mark condition; 1 destination 1 mark (mark awarded above) 1 mark 1 mark condition; 1 destination 1 mark (mark awarded above) 1 mark condition; 1 destination 1 mark 1 mark (including next b0 below) (mark awarded above) (mark awarded above) (mark awarded above)		

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& \multicolumn{3}{|c|}{Mark Allocation} \& \multicolumn{2}{|r|}{Marks}

\hline \multirow[t]{12}{*}{6.} \& \multirow[t]{8}{*}{a} \& \multirow[t]{8}{*}{(i)

(ii)} \& Area $=113 \mathrm{~mm}^{2}$ \& answer \& 1 \&

\hline \& \& \& $$
\sigma=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{717}{113}
$$ \& all substitutions \& 1 \&

\hline \& \& \& $=6.35 \mathrm{~N} / \mathrm{mm}^{2}$ \& answer \& 1 \&

\hline \& \& \& $$
\varepsilon=\frac{\Delta 1}{1}=\frac{0 \cdot 15}{2600}
$$ \& all substitutions \& 1 \&

\hline \& \& \& $=0.0000576$ \& answer \& 1 \&

\hline \& \& \& $$
E=\frac{6 \cdot 35}{0 \cdot 0000576}
$$ \& all substitutions \& 1 \&

\hline \& \& \& $\mathrm{E}=110 \mathrm{kN} / \mathrm{mm}^{2}$ \& answer \& unit \& 1 \& 7

\hline \& \& \& Titanium Alloy \& answer \& \& 1

\hline \& \multirow[t]{2}{*}{b} \& \& $$
\text { Safe working } \begin{aligned}
\sigma & =\frac{1000}{7} \\
& =143 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$ \& 1000 from data book answer \& 1 \&

\hline \& \& \& $$
\begin{gathered}
\mathrm{F}=\sigma \times \mathrm{A}=143 \times 113 \\
\mathrm{~F}=16 \cdot 2 \mathrm{kN}
\end{gathered}
$$ \& all substitutions answer \& unit \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \& 4

\hline \& \multirow[t]{2}{*}{c} \& \& | Unexpected loading or Possible Increased loading due to expect Possible impacts. |
| :--- |
| Consequence of failure. |
| Faulty material. |
| Manufacturing defect. |
| Or other valid reason. | \& | ime. |
| :--- |
| Any two at 1 each | \& \& 2

\hline \& \& \& \& \& \& (14)

\hline
\end{tabular}

Question		Mark Allocation		Marks	
9.	a	Force on each bolt $=\frac{820 \times 10^{3}}{28}$	all substitutions	1	
		$=29.3 \mathrm{kN}$	answer	1	
		$\text { Working stress }=\frac{430}{4 \cdot 5}$	430 from Data book	1	
		$=95.6$	all substitutions	1	
		Stress due to load $=95.6-10=85.6 \mathrm{~N} / \mathrm{mm}^{2}$	answer	1	
		$\text { Area }=\frac{29.3 \times 10^{3}}{85.6}$			
		$=342 \mathrm{~mm}^{2}$	answer	1	
		$\text { Diameter }=\sqrt{\frac{342 \times 4}{3 \cdot 14}}$			
		$=20.9 \mathrm{~mm}$	answer \& unit	1	7
	b	$\mathrm{E}=196 \times 10^{3}$	from data book	1	
		$\varepsilon=\frac{95.6}{196 \times 10^{3}}$	all substitutions	1	
		$=0.000488$	answer	1	
		$\begin{aligned} \Delta \mathrm{l} & =0.000488 \times 60 \\ & =0.0293 \mathrm{~mm} \end{aligned}$	all substitutions answer \& unit	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	5

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Mark Allocation \& \multicolumn{2}{|r|}{Marks}

\hline 10. \& b

c

d \& | When the turbine is turning at the desired speed, $\mathrm{V}_{\text {out }}=0$ $0=\mathrm{R}_{\mathrm{f}} \times\left(3-\mathrm{V}_{\text {tach }}\right) / 1000$ |
| :--- |
| $\left(3-\mathrm{V}_{\text {tach }}\right)=0 \quad$ or $\quad \mathrm{V}_{\text {out }}=0 \quad$ (must be stated) |
| $\mathrm{V}_{\text {tach }}=3 \mathrm{~V}$ |
| Desired speed $=3 \times 1000=3000 \mathrm{r} / \mathrm{min}$ (including units) |
| (N.B Must "show" for full marks) |
| 1% below $3000 \mathrm{r} / \mathrm{min}=99 \%$ of $3000 \mathrm{r} / \mathrm{min}=2970 \mathrm{r} / \mathrm{min}$ |
| $\mathrm{V}_{\text {tach }}=2.97 \mathrm{~V}$ answer |
| $12=\mathrm{R}_{\mathrm{f}} \times(3-2.97) / 1000 \quad$ all substitutions |
| $\mathrm{R}_{\mathrm{f}}=\frac{12 \times 1000}{0.030}$ $\mathrm{R}_{\mathrm{f}}=400 \mathrm{k} \Omega$ |
| Resistor ladder creates two references voltages for the op. amps |
| If speed is too low, $\mathrm{V}_{\text {tach }}$ is below both references; op. amp 1 saturates high and op. amp 2 saturates low |
| Transistor 1 is on, "too slow" warning light is on; |
| Transistor 2 is off, "too fast" warning is off |
| If speed not too low or too high, $\mathrm{V}_{\text {tach }}$ is between the two references; |
| Both op. amps saturate low |
| Both transistors are off, both warnings are off |
| If speed is too high, $\mathrm{V}_{\text {tach }}$ is above both references, |
| Op. amp 1 saturates low and op. amp 2 saturates high $\}$ |
| Transistor 1 is off, "too slow" warning light is off; |
| Transistor 2 is on, "too fast" warning is on | \& 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 \& 3

4

\hline
\end{tabular}

