

2011 Technological Studies

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Question		Mark Allocation		Marks	
2.	(a)	Thermistor resistance @ $16^{\circ}C = 80 \text{ k}\Omega$ (accept 78 – R/80 = 4.8/1.2 R = $80 \times 4.8/1.2$ = $320 \text{ k}\Omega$	82 kΩ) (from Data Booklet) formula, stated or implicit calculation answer including unit	1/2 1/2 1/2 1/2	2
	(b)	+12V $20 \text{ k}\Omega$ $20 \text{ k}\Omega$ $20 \text{ k}\Omega$ $20 \text{ k}\Omega$ 0 V	-12V		
		correct sun	nming amplifier configuration and resistors in correct places	1/2 1/2	1
	(c)	Thermistor resistance @ $10^{\circ}C = 100 \text{ k}\Omega$ V/6 = $100/420$ V = $6 \times 100/420$	(from Data Booklet)	1⁄2	
		= 1.43 V	answer (unit not req)	1⁄2	
			formula, stated or implicit tes ¹ / ₂ for two 1.43, ¹ / ₂ for 1.2 correct answer including unit	1/2 1 1/2	3
	(d)	$ \begin{array}{l} Gain = 5/8.12 = 0.62 \\ Inverting amplifier diagram \\ R_{\rm f} = 5 \ k\Omega, \ R_{\rm i} = 8.12 \ k\Omega \ (or \ other \ suitable \ pair - in \ the \ k\Omega \ range) \\ Resistors \ values \ correct \ way \ round. \end{array} $)	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	
		8.12 kΩ +			
		• • • • • • • • • • • • • • • • • • •			2 (8)

Quest	tion	Mark Allocation	Ма	rks
3.	(a)	$\begin{split} \Sigma Fv &= 0 \\ R_v &= 400 cos 10 - 200 cos 50 \\ &= 265 \text{ N} \end{split} \qquad \begin{array}{c} 2 \text{ components } @ \frac{1}{2} \text{ each} \\ \text{answer (unit not required)} \end{split}$	1 1⁄2	
		$\begin{split} \Sigma F_{\rm H} &= 0 \\ R_{\rm H} &= 200 \text{cos}40 - 400 \text{cos}80 \\ &= 84 \text{ N} \end{split} \qquad $	1 1⁄2	
		$R = \sqrt{(265^2 + 84^2)}$ substitution = 278 N answer including unit	1/2 1/2	
		$ \theta = \tan^{-1} (265/84) $ substitution $= 72.4^{\circ}$ answer including unit	1/2 1/2	5
	(b)	$A = 314 \text{ mm}^2$ answer (unit not required)	1⁄2	
		$\sigma = F/A$ $= 400/314$ $= 1.27 \text{ N/mm}^2$ $E = 0.9 \times 10^3 \text{ N/mm}^2$ from Data Booklet $\epsilon = \sigma/E$ $\epsilon = 1.27/0.9 \times 10^3$	1/2 1/2	
		$\varepsilon = 1.27/0.9 \times 10$ = 0.00141 answer no unit	1⁄2	
		$\begin{array}{l} \Delta l = \epsilon \times l \\ \Delta l = 0.00141 \times 20 \times 10^3 \\ \Delta l = 28.2 \text{mm} \end{array} \qquad $	1/2 1/2	3 (8)

Qı	uestion	n	Mark Allocation		Ma	ırks
4.	(a)		$\begin{split} R &= V/I = (12 - 0.7)/(3 \times 10^{-3}) \\ &= 3.77 \ k\Omega \end{split}$	substitution answer including unit	1/2 1/2	1
	(b)		Ic = P/V = 20/12 = 1.67 A	answer, unit not required	1⁄2	
			$Ic_{max} = 1.67 \times 5 = 8.35A$	answer, unit not required	1⁄2	
			$\begin{array}{rcl} h_{FE} &=& I_c/I_b \\ &=& 8\cdot 35/(3\times 10^{-3}) \\ &=& 2780 \end{array}$	substitution answer, no unit	1/2 1/2	2
	(c)	(i)		two npn transistors connections	1/2 1/2	1
		(ii)	$R = V/I = 12 - 1.4/3 \times 10^{-3}$ = 3.53 kΩ	substitution answer including unit	1/2 1/2	1
	(d)					
	(e)		Draws negligible or no current from the logic circuit.	symbol no half marks		1
			No 'base' resistor required. Can provide high output current. Has high switching speed. Low power consumption.	any 2 @ ½		1 (7)

Question		Mark Allocation		Ма	ırks
5.	(a)	• Tests if window is open.		1⁄2	
		• If open, motor off and returns, it	f not motor ON.	1⁄2	
		• Test every 1ms if window is ope	en.	1⁄2	
		• Repeats 500 times and stops mo	tor.	1⁄2	2
	(b)	<pre>main: pause 60000 gosub adcread if data < 40 then closew low 5 if data > 44 then openw low 4 goto main closew: gosub close if pin1 = 0 then main high 5 goto main</pre>	 1/2 (mark for label 'main' awarded below) 1/2 1/2 condition; 1/2 destination 1/2 1/2 condition; 1/2 destination 1/2 mark below 1/2 1/2 for 'if' statement, 'then main' awarded below 1/2 (mark awarded below) 		
		openw: gosub open if pin 0 =0 then main high 4 goto main	 1/2 1/2 for 'if' statement, 1/2 for both 'then main' 1/2 1/2 (including two 'goto main' above + label 'main') 		8 (10)

Ques	tion	Mark Allocation	Ма	irks
6.	(a)	0.3 m 0.8 m 1.4 m F, 28° 150 N 150 N dimensions two 150N forces and labelled force F with angle reaction at pivot with label (could be components)	1/2 1/2 1/2 1/2	2
	(b)	$\begin{split} \Sigma M_P &= 0 \\ (F_V \times 2.5) &= (150 \times 2.2) + (150 \times 1.4) \\ F_V &= 216 \ N \end{split} \qquad \begin{array}{l} 3 \text{ moments } @ \ \frac{1}{2} \text{ each} \\ answer (unit not required) \\ F &= 216/sin28 \\ &= 460 \ N \end{aligned}$	1 ¹ / ₂ ¹ / ₂ ¹ / ₂ ¹ / ₂	3
	(c)	$\begin{split} \Sigma F_V &= 0 \\ P_V &= 150 + 150 - 216 \\ P_V &= 84N \end{split} \qquad \text{substitution} \\ \Sigma F_H &= 0 \\ P_H &= 460 \text{cos} 28 \\ P_H &= 406 \text{ N} \end{aligned} \qquad \text{substitution} \\ \text{answer (unit not required)} \end{split}$	1/2 1/2 1/2 1/2	
		$P = \sqrt{(84^2 + 406^2)}$ = 415 N answer including unit $\tan \theta = 84/406$ $\theta = 11.7^{\circ} \text{ OR } 78.3^{\circ}$ answer (diagram not necessary)	1⁄2 1⁄2	3 (8)

Question		n	Mark Allocation		rks
7. cont	(c)	(ii)	Key statements required –		
			signal from pot. connected to wind vane changes as wind direction changes signal from pot. gives direction of turbine head error between non-inverting and inverting inputs created op-amp output increases (+ or -); error amplified a transistor switches on and motor runs/turbine head turns error reduces transistor switches off motor stops/turbine head stops 6 points @ ½		3 (11)

larks	Мс	llocation	Mark Alloca	Question	
	1⁄2	answer (unit not required)	force = 400/sin 30 =800N ¹ / ₂	(a)	
	1⁄2	answer (unit not required)	rod length = $2500/\cos 30 = 2890$ mm		
	1⁄2	from Data Booklet	$E = 190 \times 10^3 \text{ N/mm}^2$		
	1⁄2	answer (unit not required)	$\epsilon = \Delta l/l = 3/2890 = 0.00104$		
	1/2 1/2	substitution answer (unit not required)	$ \sigma = E \times \epsilon = 190 \times 10^3 \times 0.00104 $ $= 198 N/mm^2 $		
	1⁄2	answer (unit not required)	$ \begin{array}{rcl} A &= F/\sigma \\ &= 800/198 \\ &= 4.04 \ mm^2 \end{array} $		
4	1⁄2	answer, including unit	$d^2 = 4.04 \times 4/\pi$ d = 2.27 mm		
		anu tura @ 14	No corrosion Low chance of injury Easy/cheap repair Other walid reason	(b)	
1		any two @ ½	Other valid reason		
1		no ½ marks	80/3.2 = 25 (no unit)	(c) (i)	

Qı	uestior	Mark Allocation	Marks	
8.	(d)	Switch released – $V_{1}/6 = 2.4/4.6$ substitution $V_{1} = 6 \times 2.4/4.6 = 3.13$ V answer (unit not required)	1/2 1/2	
		Switch pressed – $R = (R_1 \times R_2)/(R_1 + R_2)$ $= (2.4 \times 1.6)/4 = 0.96 \text{ k}\Omega$ answer (unit not required)	1⁄2	
		$V_1/6 = 0.96/3.16$ $V_1 = 6 \times 0.96/3.16 = 1.82$ V answer (unit not required)	1⁄2	2
	(e)	Switch released – inverting input is high LDR dark and non-inverting input lower than inverting input and motor off .		
		Switch pressed – inverting input drops motor switches on ticket feeds until LDR lighter and non-inverting input drops motor off ^{1/2} mark each point		4
	(f)	LDR @ 10 Lux = 9.5 k Ω (accept 9.0 – 9.6 k Ω) (from Data Booklet) recognising and using 3.13V	1/2 1/2	
		$ \begin{array}{ll} R/9.5 = 2.87/3.13 & \text{substitution} \\ R = 9.5 \times 2.87/3.13 = 8.71 \ \text{k}\Omega & \text{answer including unit} \end{array} $	1/2 1/2	2
	(g)	Ib $= 1000/15$ substitution $= 66.7 \text{mA}$ answer (unit not required)	1/2 1/2	
		85% of 9V = 7.65V answer (unit not required)	1⁄2	
		$ \begin{array}{l} \mbox{Rb} = (V - 0.7)/I \\ = (7.65 - 0.7) \ 66.7 \times 10^{-3} \\ = 104\Omega \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \$	1 ½	3 (20)

Questio	n	Mark Allocation	Ма	rks	
9. ((a)	$\Sigma F_{\rm V} = 0$			
		$F_{AB} = 5/\sin 25 \qquad substitution \\ F_{AB} = 11.8 \text{ kN (tension)} \\ magnitude \text{ with unit (1/2) & nature (1/2)} $	1⁄2 1		
		$F_{CA} = 5 \text{ kN}$ $\Sigma F_{H} = 0$ $F_{CA} = 11.8 \text{cos} 25 \text{ substitution}$ $F_{CA} = 10.7 \text{ kN (compression)}$ $\text{magnitude with unit (1/2) \& nature (1/2)}$	1⁄2 1		
	Ana	alysing Node C			
		$F_{BC} = 0$ (redundant member)			
		$\Sigma F_{\rm H} = 0$ $F_{\rm CD} = F_{\rm CA}$ $F_{\rm CD} = 10.7 \text{ kN (compression)}$	1⁄2		
		F_{CD} F_{CA} magnitude with unit (1/2) & nature (1/2)	1		
	Ana	$\Sigma F_{V} = 0$ $F_{BD} = 5/\cos 55$ substitution $F_{BD} = 0.721 \text{ by} (1000 \text{ substitution})$	1⁄2		
	F _B	$F_{BD} = 8.72 \text{ kN} \text{ (compression)}$ magnitude with unit (1/2) & nature (1/2)	1	6	
((b) UT	$S = 430 \text{ N/mm}^2$ from Data Book	1⁄2		
	SW	$S = 430/9 = 47.8 \text{ N/mm}^2$ answer (unit not required)	1⁄2		
	А	= total area – inner area = $(3 \cdot 14 \times 80^2/4) - (3 \cdot 14 \times 72^2/4)$ substitution = $5024 - 4069$	1⁄2		
		$= 955 \text{mm}^2$ answer (unit not required)	l⁄2		
	F	$= \sigma \times A$ = 47.8 × 955 substitution = 45.6 kN answer including unit	1/2 1/2	3	
	(c) As	the strain in the member EG rises –			
	the input voltage to the non-inverting input rises as input rises V_{out} increases lower comparator goes high first as V_{out} increases upper comparator goes high lower comparator will switch on transistor and bulb upper comparator will switch on buzzer				

ion	Mark Allocation				
(d)		answer (unit not required)	1⁄2		
	= 0.0011 V	answer (unit not required)	1⁄2		
	Diff. Amp. inverting input voltage = $6V$ Diff. Amp. non-inverting input voltage = $6V + 0.0011 = 6.0011V$	answer	1/2 1/2		
	Active gauge resistance – R/120 = 6.0011/5.9989 $R = 120 \times 6.0011/5.9989 = 120.044 \Omega$	substitution answer including unit	1/2 1/2	3	
(e)		from Data Booklet	1⁄2		
	strain for lamp to light = $1 \times 10^{-4} \times 0.044/0.02$ = 0.00022	answer	1⁄2		
	$E = \sigma/\epsilon$ $\sigma = E \times \epsilon = 196 \times 10^3 \times 0.00022$ $= 43.1 \text{ N/mm}^2$	substitution answer including unit	1/2 1/2	2	
(f)	ADCREAD takes reading from strain gauge, reading compared to if $<$ than or = 200 then no warning if $>$ than 200 then light on	three values	1/2 1/2 1/2		
	if > than 220 then buzzer and light on if > than 240 then motor, buzzer and light on		1/2 1/2		
	(d) (e)	(d) Voltage at comparator inverting input = 5V Diff. Amp. error = $5/(450 \times 10^3/100)$ = 0.0011V Diff. Amp. inverting input voltage = $6V$ Diff. Amp. non-inverting input voltage = $6V + 0.0011 = 6.0011V$ Active gauge resistance – R/120 = 6.0011/5.9989 $R = 120 \times 6.0011/5.9989 = 120.044 \Omega$ (e) $E = 196 \times 10^3 \text{ N/mm}^2$ strain for lamp to light = $1 \times 10^{-4} \times 0.044/0.02$ = 0.00022 $E = \sigma/\epsilon$ $\sigma = E \times \epsilon = 196 \times 10^3 \times 0.00022$ $= 43.1 \text{ N/mm}^2$ (f) ADCREAD takes reading from strain gauge, reading compared to if < than or = 200 then no warning if > than 200 then light on	(d)Voltage at comparator inverting input = 5V Diff. Amp. error = $5/(450 \times 10^3/100)$ = 0.0011Vanswer (unit not required) answer (unit not required)Diff. Amp. inverting input voltage = $6V$ Diff. Amp. non-inverting input voltage = $6V + 0.0011 = 6.0011V$ answerActive gauge resistance - $R/120 = 6.0011/5.9989$ R = $120 \times 6.0011/5.9989 = 120.044 \Omega$ substitution answer including unit(e) $E = 196 \times 10^3 \text{ N/mm}^2$ $= 0.00022$ from Data Booklet answer $E = \sigma/\epsilon$ $\sigma = E \times \epsilon = 196 \times 10^3 \times 0.00022$ answer(f)ADCREAD takes reading from strain gauge, reading compared to three values if < than or = 200 then no warning if > than 200 then light on	(d)Voltage at comparator inverting input = 5V Diff. Amp. error = $5/(450 \times 10^3/100)$ = 0.0011Vanswer (unit not required) $\frac{1}{2}$ Diff. Amp. inverting input voltage = $6V$ Diff. Amp. non-inverting input voltage = $6V + 0.0011 = 6.0011V$ $\frac{1}{2}$ Active gauge resistance - R/120 = $6.0011/5.9989$ R = $120 \times 6.0011/5.9989 = 120.044 \Omega$ $\frac{1}{2}$ (e) $E = 196 \times 10^3 \text{ N/mm}^2$ strain for lamp to light = $1 \times 10^{-4} \times 0.044/0.02$ = 0.00022 from Data Booklet $\frac{1}{2}$ V_2 V_2 answer including unit $\frac{1}{2}$ (f)ADCREAD takes reading from strain gauge, reading compared to three values if < than or = 200 then no warning if > than 200 then light on $\frac{1}{2}$	

Quest	tion			Mark Allocation		Ma	ırks
10.	(a)	Gain = $5/4.6 \times$ For non-invert	$10^{-3} = 1087$ ing amplifier, gain =	$= 1 + R_c/R_c = 1087$	answer no unit	1⁄2	
				$R_{\rm f}/R_{\rm i} = 1086$	answer	1⁄2	
		$R_f = 1086 \text{ k}\Omega,$	$R_i = 1 k\Omega$	(or other su	uitable pair, higher in the $k\Omega$ range)	1⁄2	
			<u>1086 kΩ</u>	G			
				Correct	non inverting amplifier circuit with resistor values in correct places	1/2	2
		[+ -∕_			/ _	_
		占 -	-+	-			
		1 kΩ					
		Ϋ́					
				_			
	(b)	Output voltage	$e = 1.48 \times 10^{-3} \times 10$	87 = 1.61V	answer (unit not required)	1⁄2	
		ADC output	$=255 \times 1.61/5$		substitution	1/2	
			= 82		answer	1⁄2	
		Binary value –	- 0101 0010		answer	1⁄2	2
	(c)		tored into variable I	DATA		1/2	
			l to variable FIRST g stored in DATA.]	DATA compared to FIF	RST.	$\frac{1/2}{1/2}$	
					r FIRST value moved into DATA	1⁄2	2
	(d)	reverse:	low 3	or low mpx			
			gosub adcread first = data		1/2		
			high 3	or high mpx	$\frac{72}{1/2}$ (both pin3 commands)		
			gosub adcread	0	$\frac{1}{2}$ (both gosub adcread)		
			if first > data then	equal	¹ / ₂ condition; ¹ / ₂ dest		
			goto compare	-	1/2		
		equal:	data = first		1/2		
		compare:	if data < 66 then f	inish	¹ / ₂ whole line		
			if data < 122 then		1/2		
			if data < 189 then	•	1/2		
			if data < 255 then	twenty_five	1/2		
		1 1 1	b6 = 0		1/2		
		label: finish:	gosub warning return		¹ / ₂ ¹ / ₂ incl 3goto finish/return		
					C C		
		seventy_five:	b6 = 75	or acto label	1/2		
			gosub warning goto finish	or goto label or return	mark above		
		fifty:	b6 = 50		1/2		
			gosub warning	or goto label	/2		
			goto finish	or return	mark above		
		twenty_five:	b6 = 25		1⁄2		
		-	gosub warning	or goto label	¹ ⁄ ₂ all 4 gosub warning		9
			goto finish	or <i>return</i>	mark above		

Quest	tion	Mark Allocation		
10.cont	(e)			
		both 75ms off times in correct sequence three 50ms off times in correct sequence two 25ms off times in correct sequence all 25ms on times	1/2 1/2 1/2 1/2	2
	(f)	$I_{b} = (5 - 0.7)/1000$ substitution = $4 \cdot 3mA$ answer (unit not required)	1/2 1/2	
		$I_{c} = (12 - 0.22)/56$ substitution = 210mA answer (unit not required)	1/2 1/2	
			1/2 1/2	3 (20)

[END OF MARKING INSTRUCTIONS]