## 2009 Technological Studies

## Higher

## Finalised Marking Instructions

© Scottish Qualifications Authority 2009
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.


Page 2






| Question |  | Mark Allocation |  | Marks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6. | (a) | $\begin{aligned} \text { LDR resistance } & =200 \Omega \\ \text { Rv } & =200 / 1000 \times 8 \\ & =1.6 \mathrm{k} \Omega \end{aligned}$ | from data book substitution answer $1 / 2$; units $1 / 2$ | $\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$ | 2 |
|  | (b) | Maximum output voltage before saturation $=85 \%$ $\begin{aligned} \mathrm{I} & =\mathrm{V} / \mathrm{R} \\ & =(7.65-0.7) / 760 \\ & =9.14 \mathrm{~mA} \end{aligned}$ |  | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ | 2 |
|  | (c) | $\text { (i) } \begin{aligned} \mathrm{I} & =9 / 15 \\ & =600 \mathrm{~mA} \end{aligned}$ | calculation answer | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ | 1 |
|  |  | $\text { (ii) } \begin{aligned} \mathrm{h}_{\mathrm{FE}} & =600 / 9.14 \\ & =65.6 \end{aligned}$ | calculation answer | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ | 1 |
|  |  | (iii) 2 N 3704 |  |  | $\begin{gathered} 1 \\ (7) \end{gathered}$ |
| 7. | (a) | $\begin{aligned} & \sum \mathrm{M}_{\mathrm{H}}=0 \\ & (\mathrm{~F} \cos 30 \times 800)+(142 \cos 70 \times 1100)=(300 \times 400) \\ & \mathrm{F} \cos 30=83.22 \\ & \mathrm{~F}=96.1 \mathrm{~N} \end{aligned}$ | formula stated or implicit three terms @ $1 / 2$ each calculation answer, including units | $\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$ | 3 |
|  | (b) | $\begin{aligned} & \sum \mathrm{F}_{\mathrm{V}}=0 \\ & \mathrm{R}_{\mathrm{V}}+142 \cos 70+96.1 \cos 30=300 \\ & \mathrm{R}_{\mathrm{V}}=168.2 \mathrm{~N} \end{aligned}$ | formula stated or implicit three components @ $1 / 2$ each answer (units not necessary) | $\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 / 2 \end{gathered}$ |  |
|  |  | $\begin{aligned} & \Sigma \mathrm{F}_{\mathrm{H}}=0 \quad \text { formula stated or impl } \\ & \mathrm{R}_{\mathrm{H}}+96.1 \cos 60=142 \cos 20 \\ & \mathrm{R}_{\mathrm{H}}=85.4 \mathrm{~N} \end{aligned}$ | $1 / 2$ if no mark awarded above) two components @ $1 / 2$ each answer (units not necessary) | $\begin{gathered} 1 \\ 1 / 2 \end{gathered}$ |  |
|  |  | $\begin{aligned} \mathrm{R} & =\sqrt{ }\left(168^{2}+85.4^{2}\right) \\ & =188 \mathrm{~N} \end{aligned}$ | formula and calculation answer including units | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ |  |
|  |  | $\begin{aligned} \tan \theta & =168 / 85.4 \\ \theta & =63.1^{\circ} \text { (from horizontal) } \end{aligned}$ | substitution answer | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ | 6 $(9)$ |


| Question |  | Mark Allocation | Marks |  |
| :---: | :---: | :---: | :---: | :---: |
| 8. | (a) | Digital to analogue converter (summing amplifier and inverting amplifier - $1 / 2$ mark) |  | 1 |
|  | (b) | $V_{\text {out }}=-\mathrm{R}_{\mathrm{f}}\left(\mathrm{V}_{1} / \mathrm{R}_{1}+\mathrm{V}_{2} / \mathrm{R}_{2}+\mathrm{V}_{3} / \mathrm{R}_{3}+\mathrm{V}_{4} / \mathrm{R}_{4}\right) \mathrm{x}-\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{i}}$ | $1 / 2$1 |  |
|  |  | ( $1 / 2$ for whole formula, stated or implicit) $V_{\text {out }}=-100(0 / 800+5 / 400+0 / 200+5 / 100) x-100 / 100$ |  |  |
|  |  | correct substitution ( $1 / 2$ for 1 mistake, 0 for more than 1 mistake) |  |  |
|  |  | $\mathrm{V}_{\text {out }}=6.25 \mathrm{~V}$ answer, including units | 1/2 | 2 |
|  | (c) | Pulse width modulation (pwm - $1 / 2$ mark) |  | 1 |
|  | (d) | 3:1 |  | 1 |
|  | (e) | (i) The motor would gradually (or gently) accelerate to full speed. (accelerate - $1 / 2$ mark; gradually or gently - $1 / 2$ ) | 1 |  |
|  |  | (ii) The purpose is to avoid damage to the motor (or mechanisms connected to the motor). To reduce wear in components. | 1 | 2 $(7)$ |

Section B



| Question |  |  | Mark Allocation | Marks |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10. | (a) | Analysing Node D |  |  |  |
|  |  |  | $\Sigma \mathrm{F}_{\text {up }}=\Sigma \mathrm{F}_{\text {down }}$ <br> $\mathrm{F}_{\mathrm{DE}} \cos 60=4.68$ <br> equation <br> $\mathrm{F}_{\mathrm{DE}}=4.68 / \cos 60$ | 1/2 |  |
|  |  | $4.68 \mathrm{kN}$ | $\mathrm{F}_{\mathrm{DE}}=9.36 \mathrm{kN}$ (tension) magnitude \& units \& nature | 1 |  |
|  |  |  | $\begin{aligned} & \sum \mathrm{F}_{\text {right }}=\Sigma_{\text {Fleft }} \\ & \mathrm{F}_{\mathrm{CD}}=9.36 \cos 30 \quad \text { equation } \\ & \mathrm{F}_{\mathrm{CD}}=8.11 \mathrm{kN} \text { (compression) } \quad \text { magnitude \& units \& nature } \end{aligned}$ | $1 / 2$ 1 |  |
|  |  | Analysing Node C |  |  |  |
|  |  |  | $\begin{aligned} & \Sigma \mathrm{F}_{\text {left }}=\Sigma \mathrm{F}_{\text {right }} \\ & \mathrm{F}_{\mathrm{BC}}=\mathrm{F}_{\mathrm{CD}} \\ & \mathrm{~F}_{\mathrm{BC}}=8.11 \mathrm{kN} \text { (compression) } \quad \text { magnitude \& units \& nature } \end{aligned}$ | 1 |  |
|  |  | Analysing Node B |  |  |  |
|  |  |  | $$ | 1 1 | 6 |
|  | (b) | $\begin{aligned} & \begin{array}{l} \text { UTS }=430 \mathrm{~N} / \mathrm{mm} 2 \\ \text { Force in each bolt } \end{array}=(3.42 / 4)+80 \\ & =935 \mathrm{~N} \end{aligned}$ | from data book calculation answer (units not necessary) | $1 / 2$ $1 / 2$ $1 / 2$ |  |
|  |  | $\begin{aligned} \sigma \text { in each bolt } & =430 / 8 \\ & =53.8 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ | calculation answer (units not necessary) | 1/2 |  |
|  |  | $\begin{aligned} \mathrm{A} & =\mathrm{F} / \sigma \\ & =935 / 53.75 \\ & =17.4 \mathrm{~mm}^{2} \\ \mathrm{~d} & =\sqrt{ }((\mathrm{A} \times 4) / \pi) \\ & =\sqrt{ }((17.4 \times 4) / 3.14) \\ & =4.71 \mathrm{~mm} \end{aligned}$ | calculation answer (units not necessary) formula, stated or implicit calculation answer, including units | $\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ | 5 |

Page 12


[END OF MARKING INSTRUCTIONS]

