

2009 Technological Studies

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Section A

Question	Mark Allocation	М	arks
1. (a)	$Z = (\overline{C}.\overline{T}.S) + (C.\overline{T}.\overline{S}) + (C.\overline{T}.S)$ ¹ / ₂ mark for each item in brackets ¹ / ₂ for linking with OR function	1½ ½	2
(b)	OR $Z = \overline{T}$, (C + S) C T S C T S	$\frac{1}{2}$ 1 1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2 2 3
(c)	C T S C	$ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} $	3

Question	Mark Allocation	Marks	
	OR $C \longrightarrow C$ $S \longrightarrow C$ $T \longrightarrow C$ $T \longrightarrow C$ $C \longrightarrow C$ $T \longrightarrow C$ $C \longrightarrow C$	1 1/2 1/2	2
(d)	 (i) CMOS no ¹/₂ marks (ii) Voltage range suitable for 9V supply. Low current usage/low power consumption Fan out Noise immunity NOT cost 	1 ¹ / ₂ ¹ / ₂	2 (9)

Qu	uestion	Mark Allocation	M	arks
2.	(a)	A diode The diode prevents back emfs from damaging the transistor. (Full answer required)	$\frac{1/2}{1/2}$	1
	(b)	Input sub-system: • The input sub-system consists of a thermistor and resistor in a voltage divider. • As the temperature rises, the resistance of the thermistor falls. • As the temperature rises, the voltage across the thermistor falls. • As the temperature rises, the voltage across the thermistor falls. • As the temperature rises the signal voltage rises (or the voltage at the base of the transistor rises). (½) Process sub-system: • When the voltage on the base of the transistor reaches 0.7 V a base current flows. • The transistor amplifies the base current into a larger collector current. • When the voltage on the base of the transistor reaches 0.7 V the transistor is switched on. • When the transistor is switched on collector current flows. any two answers @ ½ mark each: Output sub-system: When surrent flows through the motor (or transistor suitabes on) the motor turned.	1/2	
		- When current flows through the motor (or transistor switches on) the motor turns. $\frac{1}{2}$ mark:	1/2	3
	(c)	(i) (i) correct Darlington correct connections of circuit ($\frac{1}{2}$) (ii) Darlington pair/Darlington driver. (iii) h _{FE(overall}) = h _{FE (1)} x h _{FE (2)} h _{FE (2)} = h _{FE(overall}) ÷ h _{FE (1)} formula, stated or implicit ($\frac{1}{2}$)	1 1	
		$h_{FE (2)} = h_{FE (overall)} \div h_{FE (1)}$ $h_{FE (2)} = 1500 \div 50 = 30$ answer with no units (¹ / ₂)	1	3
	(d)	A MOSFET transistor is <i>voltage operated</i> , whereas a bipolar transistor is <i>current operated</i> .		1 (8)

Ques	stion	Mark Allocation	Mar	~ks
3.	(a)	(i) $12 \times 4 \times 7.5 = 360^{\circ}$ no half marks (unit not required)(ii) $12 \times 4 \times 20 = 960 \text{ ms} (0.96 \text{ s})$ no half marks (units required)	1 1	2
	(b)	main: let dirs = $\%11110000$ (optional) for b0 = 1 to 24 let pins = $\%01100000$ pause 5 let pins = $\%01010000$ pause 5 let pins = $\%10010000$ pause 5 let pins = $\%10100000$ pause 5 next b0		
	(c)	end correct time delays correct number of loops steps in correct order Only two output pins of the microcontroller are required. The programming is simpler/easier to change.	1/2	2 2 (6)

Qu	estion	Mark Allocation	M	arks	
4.	(a)	Ductile.		1	
	(b)	$\sigma = F/A$ = 30/80 correct substitution of values using a load value within elastic region = 0.375 kN/mm ² correct calculation (units not necessary)	$\frac{1/2}{1/2}$		
		$= \Delta l/l$ = 0.1/50 correct substitution of values using the corresponding extension value = 0.002 correct calculation $\frac{1}{2}$			
		$E = \sigma/\epsilon$ = 0.375/0.002 = 188 kN/mm ² correct substitution into correct formula correct answer including correct units	1/2 1/2	3	
	(c)	$\sigma_{\text{ultimate}} = F/A$ = 80/80 = 1 kN/mm ² correct substitution into correct formula correct answer including correct units	$\frac{1/2}{1/2}$	1	
	(d)	(i) Factor of Safety = $\sigma_{\text{ultimate}} / \sigma_{\text{safe working}}$ $\sigma_{\text{safe working}} = \sigma_{\text{ultimate}} / \text{Factor of Safety}$ = 1000 N/mm ² /6 = 167 N/mm ² correct substitution into correct formula correct answer including correct units	1/2 1/2	1	
		(ii) $\sigma = F/A$ $F = \sigma x A$ = 167 x 30 x 10 = 50.1 kN correct substitution into correct formula correct answer including correct units	$\frac{1}{2}$ $\frac{1}{2}$	1 (7)	

Q	uestion	Mark Allocation	M	arks
5	(a)	A multiplexer allows either of the analogue signals to be selected; or A multiplexer enables more than one analogue sensor to be connected to one A to D converter.		1
	(b)	Tempmonitor page = 0 Select sensor A adcread Page = 1 Page = 1 Select sensor B Carrier B Ca		
		tempmonitor & return boxes all other box content ½ mark each correct box types (subtract ½ for first instance of incorrect box type up to 1 mark maximum)	¹ / ₂ 4 ¹ / ₂ 1	6 (7)

Qu	estion	Mark Allocation	M	arks
6.	(a)	LDR resistance = 200Ω from data book $Rv = 200/1000 \times 8$ substitution $= 1.6 k\Omega$ answer $\frac{1}{2}$; units $\frac{1}{2}$		2
	(b)	Maximum output voltage before saturation = 85% of $9V = 7.65V$ calculationI = V/Rformula stated or implied= $(7.65 - 0.7)/760$ substitution= 9.14 mA answer including units	$\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$ $\frac{1/2}{1/2}$	2
	(c)	(i) $I = 9/15$ calculation $= 600 \text{ mA}$ answer(ii) $h_{FE} = 600/9.14$ calculation	1/2	1
		(ii) $n_{FE} = 000/9.14$ = 65.6 answer (iii) 2N3704	1/2	1 1 (7)
7.	(a)	$ \begin{split} \Sigma M_{\rm H} &= 0 \\ ({\rm Fcos}30 \ge 800) + (142\cos70 \ge 1100) = (300 \ge 400) \\ {\rm Fcos}30 &= 83.22 \\ {\rm F} &= 96.1 \ {\rm N} \end{split} \ \ \begin{array}{c} \mbox{formula stated or implicit} \\ \mbox{three terms} @ \ \frac{1}{2} \ \mbox{each} \\ \mbox{calculation} \\ \mbox{answer, including units} \end{split} $	$ \begin{array}{c} \frac{1}{2} \\ 1\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	3
	(b)	$\begin{split} \Sigma F_{V} &= 0 & \text{formula stated or implicit} \\ R_{V} &+ 142\cos 70 + 96.1\cos 30 = 300 & \text{three components} @ \frac{1}{2} \text{ each} \\ R_{V} &= 168.2 \text{ N} & \text{answer (units not necessary)} \\ \Sigma F_{H} &= 0 & \text{formula stated or implicit (} \frac{1}{2} \text{ if no mark awarded above)} \\ R_{H} &+ 96.1\cos 60 = 142\cos 20 & \text{two components} @ \frac{1}{2} \text{ each} \\ R_{H} &= 85.4 \text{ N} & \text{answer (units not necessary)} \\ \end{split}$	$ \begin{array}{c} 1\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{array} $	
		$R = \sqrt{(168^2 + 85.4^2)}$ formula and calculation answer including units $= 188$ Nanswer including units $\tan \theta = 168/85.4$ substitution answer $\theta = 63.1^{\circ}$ (from horizontal)answer	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	6 (9)

Qu	estion	Mark Allocation	M	arks
8.	(a)	Digital to analogue converter (summing amplifier and inverting amplifier - 1/2 mark)		1
	(b)	$V_{out} = -R_f (V_1/R_1 + V_2/R_2 + V_3/R_3 + V_4/R_4) \times -R_f/R_i$ (¹ /2 for whole formula, stated or implicit)	¹ /2	
		$\begin{vmatrix} V_{out} = -100 (0/800 + 5/400 + 0/200 + 5/100) x -100/100 \\ correct substitution (1/2 for 1 mistake, 0 for more than 1 mistake) \\ V_{out} = 6.25 V \\ answer, including units \end{vmatrix} \frac{1}{1/2}$		2
		v _{out} = 0.25 v answer, meruding units	72	4
	(c)	Pulse width modulation (pwm - ¹ / ₂ mark)		1
	(d)	3:1		1
	(e)	 (i) The motor would gradually (or gently) accelerate to full speed. (accelerate - ¹/₂ mark; gradually or gently - ¹/₂) (ii) The purpose is to avoid damage to the motor (or mechanisms connected to the 	1	
		motor). To reduce wear in components.	1	2 (7)

Question		Mark Allocatio	n	М	arks
(c)	10110111 = 1		calculation	1/2	
		$= 5 \times 183/255 = 3.59 \text{V}$	calculation	1/2	
	V from senso		calculation	1/2	
		= 4.88 V	answer (including units)	1/2	2
	. 1				
	Alternative an		1 1	1	
	V from senso	$r = 6.8 \times 183/255$	calculation	1	2
		= 4.88 V	answer $\frac{1}{2}$, units $\frac{1}{2}$	1	2
(d)	frontbags:	low 0	(1/2)		
(4)	noncougs.	gosub adcread	(1/2)		
		if data > 147 then testpassenger	(1)		
	testdriver:	high 0	(1/2)		
		gosub adcread	(1/2)		
		if data > 103 then deploydrivers	(1)		
		return	(1/2)		
	testpassenger	: if data > 182 then deployboth	(1)		
		high 6	$\binom{1}{2}$		
		goto testdriver	(1/2)		
	deployboth:	high6			
	deployootii.	high7	$\binom{1}{2}$		
		return	$(\frac{1}{2})$ ($\frac{1}{2}$ both returns)		
			(/2000.000.00)		
	deploydrivers	s: if data > 182 then deployboth	(1)		
		high7	(1/2)		
		return	no marks for labels		9
	$\mathbf{V} = \mathbf{D} \mathbf{A}$			17	
(e)	$V_{out} = -K_f(V)$	$V_1/R_1 + V_2/R_2 + V_3/R_3 + V_4/R_4)$	formula, stated or implicit	$\frac{1}{2}$	
		.2/10 + 1.2/10 + 0.6/5 + 0.6/5)	correct substitution	$\frac{1}{2}$	
	$-4.5 = -R_{\rm f} (4.5)$		calculation	$\frac{1}{2}$	2
	$R_{\rm f} = 9.38 \ {\rm k}$	<u>5</u> 22	answer including units	1/2	4
(f)	$I_c = 3.6/6 = 0.6$.6 A			
	$h_{\rm FE} = 600/15$.		calculation	1/2	
	= 38.7		answer	1/2	1
					(20)

Qu	estion	Question Mark Allocation		M	arks
10.	(a)	Analysing Node D			
		F_{DE} F_{CD} 4.68 kN	$\begin{split} \Sigma F_{up} &= \Sigma F_{down} \\ F_{DE} &cos60 = 4.68 \\ F_{DE} &= 4.68 / cos60 \\ F_{DE} &= 9.36 \text{ kN (tension)} \\ & \text{magnitude \& units \& nature} \end{split}$	¹ / ₂	
		÷	$\Sigma F_{right} = \Sigma_{Fleft}$ $F_{CD} = 9.36 cos 30$ equation $F_{CD} = 8.11 \text{ kN (compression)}$ magnitude & units & nature	¹ / ₂ 1	
		<u>Analysing Node C</u> F_{BC} F_{CD}	$\Sigma F_{left} = \Sigma F_{right}$ $F_{BC} = F_{CD}$ $F_{BC} = 8.11 \text{ kN (compression)}$ magnitude & units & nature	1	
		F _{BE} 11.1 kN 8.11 kN	$\begin{split} \Sigma F_{left} &= \Sigma_{Fright} \\ F_{BE} cos30 + 8.11 = 11.1 \\ F_{BE} &= 2.99/cos30 \\ F_{BE} &= 3.45 \text{ kN (compression)} \\ & \text{magnitude \& units \& nature} \end{split}$	1	6
	(b)	UTS = 430 N/mm2 Force in each bolt = $(3.42/4) + 80$ = 935 N	from data book calculation answer (units not necessary)	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
		σ in each bolt = 430/8 = 53.8 N/mm ²	calculation answer (units not necessary)	$\frac{1}{2}$ $\frac{1}{2}$	
		$A = F/\sigma$ = 935/53.75 = 17.4 mm ² $d = \sqrt{((A \times 4)/\pi)}$ = $\sqrt{((17.4 \times 4) / 3.14)}$ = 4.71 mm	calculation answer (units not necessary) formula, stated or implicit calculation answer, including units	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	5

uestion	Mark Allocation	М	arks
(c)	+9V from op.amp output -9V NPN/PNP transistors (½ mark each) transistor connections	1	
	motor	$\frac{1}{2}$	2
(d)	(i) $V_2 - V_1 = V_{out}/(R_f/R_i)$ formula, stated or implicit $V_2 - V_1 = 9.68/(260/9)$ $V_2 - V_1 = 0.34$ answer (units not necessary)	$\frac{1}{2}$ $\frac{1}{2}$	
	$V_1 = V_2 - 0.34$ $V_1 = 4.08 - 0.34$ $V_1 = 3.74 V$ calculation answer including units	$\frac{1}{2}$ $\frac{1}{2}$	2
	(ii) $V_{out}(max) = 0.85 \times 16 = 13.6 \text{ V}$ calculation and answer calculation and answer calculation and answer	$\frac{1}{2}$ $\frac{1}{2}$	1
(e)	If lower resistance in potentiometer B is increased/altered, V_2 will increase/change Non-inverting input voltage becomes greater than inverting input voltage Difference amplifier amplifies voltage difference, output goes positive & motor turns As motor turns lower resistance of potentiometer A increases and V_1 increases Voltage difference decreases and motor slows and then stops. If lower resistance of potentiometer B is decreased then motor will turn other way V_1 will decrease and the motor will slow down and stop any four answers (½ mark each)		2
(f)	Increase gain of difference amplifier		1
(g)	Motor will overshoot desired position. Motor will not settle at desired position (it will hunt). Motor will run either full speed forward or full speed reverse ON/OFF NOT acceptable		1
	any answer		1 (20)

Qu	estion	Mark Allocation	М	arks
11	(a)	(i) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
	(b)	Keys 4, 6 and 7 must be pressed (no half marks)		1
	(c)	The correct keys must be held down to open the door.(no half marks)If any of the correct keys are released, the door will shut.(no half marks)	1 1	2
	(d)	(i) 4, 5, 6 and 7 (ii) Input pin 2 (no half marks)		1 1
	(e)	main:gosub scan $\frac{1}{2}$ for all three 'gosub scan' commandsif b0 = 10 then scan21goto main $\frac{1}{2}$ scan2:gosub scanif b0 = 12 then scan31goto scan2 $\frac{1}{2}$ scan3:gosub scanif b0 = 12 then scan31if b0 = 12 then scan41goto main $\frac{1}{2}$		6
	(f)	The # key must be pressed, then released; the '3' key must be pressed, then released; the '8' key must be pressed, then released; the '5' key must be pressed, then released. # key correct number keys in correct order pressing then releasing of each key	¹ / ₂ 1 ¹ / ₂	2
	(g)	$R = V/I = (5 - 0.7) V/0.8 \times 10^{-3}$ (correct substitution in correct formula) = 5.38 kΩ (correct answer including units)	$\frac{1}{2}$ $\frac{1}{2}$	1
	(h)	The microcontroller signal is low The NPN transistor is switched off the voltage at the collector of the transistor is +12 V this voltage is applied to the gate of the MOSFET, turning red LED on	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2
	(i)	Current through solenoid = $V/R = (12 - 0.2)/50 = 0.236$ A (units not necessary) Total collector current = $0.236 + 0.020 = 0.256$ (only 1 LED is on) (units not necessary) $h_{FE} = Ic/Ib = 256/0.8 = 320$ (NO units)	1 ¹ / ₂ ¹ / ₂	2 (20)

[END OF MARKING INSTRUCTIONS]