2013 Technological Studies

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Technological Studies Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Section A

Q1
(a) (i)

Marks	
	2

(a) Rail is not symmetrical on each side of neutral axis
(b)
$\mathrm{I}=20 \cdot 1 \times 10^{6} \mathrm{~mm}^{4}$
$\mathrm{o}_{\max }=150 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile)
$\mathrm{y}_{1}=79.3 \mathrm{~mm}-$ compression
$\mathrm{y}_{1}=74 \cdot 7 \mathrm{~m}-$ tension

$$
\begin{aligned}
& \frac{\mathrm{M}}{\mathrm{I}}=\frac{\sigma}{\mathrm{y}} \\
& \mathrm{M}=\frac{\sigma}{\mathrm{y}}
\end{aligned}
$$

For tension:
$\mathrm{M}_{\mathrm{T}}=\frac{150 \times 20 \cdot 1 \times 10^{6}}{74.7}=40361446 \mathrm{Nmm}$
$\mathrm{L}=\frac{8 \mathrm{M}}{\mathrm{F}}$
$\mathrm{L}_{\mathrm{T}}=\frac{8 \times 40361446}{180 \times 10^{3}}$
$\mathrm{L}_{\mathrm{T}}=1794 \mathrm{~mm}$
Max. Allowable span $=1.79 \mathrm{~m}$

Marks	

Q2
(c) $\frac{M}{\mathrm{I}}=\frac{\sigma}{\mathrm{y}}=\frac{\mathrm{E}}{\mathrm{R}}$

$$
\mathrm{R}=\frac{\mathrm{EI}}{\mathrm{M}}
$$

$$
\mathrm{R}_{\mathrm{c}}=\frac{200 \times 10^{3} \times 20 \cdot 1 \times 10^{6}}{38020176}
$$

$$
=105733 \mathrm{~mm}=105 \mathrm{~m}
$$

OR (alternative answer for full marks)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{T}} & =\frac{200 \times 10^{3} \times 20 \cdot 1 \times 10^{6}}{40361446} \\
& =99600 \mathrm{~mm}=99.6 \mathrm{~m}
\end{aligned}
$$

Marks	
1	3

Q3

(a) main:	call movlw	adcread $d^{\prime} 128$
	subwf btfsc goto	DATA STATUS, Z main
	btfss	STATUS, C
	goto	low
call	RAISE	
	goto call low:	main LOWER main

(b) RAISE: $\left.\underset{\text { movlw }}{\text { movwf }} \begin{array}{l}\mathrm{d}^{〔} 4^{\prime} \\ \text { COUNTER }\end{array}\right\}$
loop: $\left.\begin{array}{ll}\text { movlw } \\ \text { movwf }\end{array} \begin{array}{l}\mathrm{b}^{‘} 01100000 \\ \text { PORTB }\end{array}\right\}$
movlw d‘1’
call wait
movlw b‘01000000'
movwf PORTB $\}$
movlw d‘199’
call wait
decfsz COUNTER, F
goto loop
return

Marks		
for both		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1	1	
1	1	
1	1	
1		
1		

Marks

5V - JK (Units)
5 V - JK (Tens)
$\overline{\mathrm{Q}}$ - CLK (Units)
$\overline{\mathrm{Q}}$ - CLK (Tens)
$\overline{\mathrm{Q}}$ - AND (Units)
AND - CLK (Tens)
AND - OR
Units SET
Units RESET $\}$ Set to 9
Tens SET
Tens RESET
Set to 5
Inverter to CLK (Tens)

$|$| 1 | |
| :--- | :--- |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 1 | |
| 2 | |
| | $(\mathbf{1 3)}$ |

Page 7

Q5

read:	bcf movlw	$\begin{aligned} & \text { STATUS, C } \\ & d^{\prime} 8^{\prime} \end{aligned}$
	movwf	COUNTER
loop:	bcf	STATUS, C
	btfss	PORTB, 3
	bsf	STATUS, C
	rlf	BUFFER, F
	movlw	d'3'
	call	pause
	decfsz	COUNTER, F
	goto	loop
	movlw	d'4'
	movwf	COUNTER $\}$
loop 2:	bsf	PORTB, 7
	movlw	d'250'
	call	pause
	bcf	PORTB, 7
	movlw	d'250'
	call	pause
	decfsz	COUNTER, F
	goto	loop 2
	return	

Marks	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	$(\mathbf{1 8)}$

(a) A Push switch sets SR, enabling counter; disables reset of counter.

B Counts clock pulses.
C Decodes binary number into decimal .
D AND gates cause reset of SR on count 7; disables and clears counter
E Logic Array decodes decimal into sequence of machine.
(b)

Counter Count	Tail Wag	Walk	Left Eye	Right Eye	Bark	Flip	
0	0	0	0	0	0	0	
1	1	1	1	0	0	0	
2	1	1	0	1	0	0	
3	1	1	1	0	0	0	
4	1	1	0	1	0	0	
5	1	1	0	0	1	0	
6	0	0	0	0	0	1	
7							

1 each correct column
1 for reset on 7 .

Marks	
1	
1	
1	
1	8
3	
1	

Q7
(a) (i)

(ii) $\frac{47 \cdot 5}{50} \times 2=1 \cdot 9 \mathrm{mFromLHE}$
(b) From LHE

$0.5 \mathrm{~m}:$	$(47.5 \times 0.5)-(0.5 \times 25 \times 0.25)$	$=20.625 \mathrm{kNm}$
$1 \mathrm{~m}:$	$(47.5 \times 1)-(1 \times 25 \times 0.5)$	$=35 \mathrm{kNm}$
$1 \cdot 5 \mathrm{~m}:$	$(47.5 \times 1.5)-(1.5 \times 25 \times 0.75)$	$=43.125 \mathrm{kNm}$
2 m	$:$	$(47.5 \times 2)-(2 \times 25 \times 1)$
$2.5 \mathrm{~m}:$	$(47.5 \times 2.5)-(2.5 \times 2.5 \times 1.25)-(0.5 \times 30)$	$=45 \mathrm{kNm}$

Distance from left hand end (m)	0 m	$0 \cdot 5$	1 m	$1 \cdot 5 \mathrm{~m}$	2 m	$2 \cdot 5 \mathrm{~m}$	3 m
Bending moment (kNm)	0	$20 \cdot 6$	35	$43 \cdot 1$	45	$25 \cdot 6$	0
1							2

Marks	

Q8
(a) (i) Three (push to make) switches each send a signal to ss(ii)
(ii) Three SR bistables each set by a contestant, lights their lamp. All reset by quizmaster
(iii) AND gate triggers monostable;
disables contestant switches.
One contestant disables other two
(iv) Monostable provides a signal to astable, when triggered low.
(v) When output from (iv) goes high, astable is enabled; buzzer sounds, at set frequency for a fixed time.
(b)

Frequency: $f=\frac{1.44}{\left(R_{1}+2 R_{2}\right) \mathrm{C}}$
$\mathrm{f}=\frac{1.44}{\left(1 \times 10^{3}+2 \times 10^{3}\right) \times 1 \times 10^{-6}}$
$\mathrm{f}=480 \mathrm{~Hz}$

Marks	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

Q9

(a)	main:	btfss goto	PORTB, 1 main
	loop:	bsf	PORTB, 7
		movfw	MARK
		call	pause
		bcf	PORTB, 7
		movfw	SPACE
		call	pause
		btfss	PORTB, 4
		goto	decrease
		movlw	d'2'
		addwf	MARK, F
	decrease:	btfss	PORTB, 3
		goto	opto
		movlw	d'2'
		subwf	MARK, F
	opto:	btfss	PORTB, O
		goto	opto
		incf	COUNT
		rlf	COUNT, F
		rlf	COUNT, F
		bsf	PORTB, 6
		movfw	COUNT
		call	pause
		bcf	PORTB, 6
		btfsc	PORTB, 5
		end	
		goto	main

Q9
(b) (i) $\quad V_{\text {out }}=\frac{1}{R C} \int V_{\text {in }} d t$
$\mathrm{V}_{\text {out }}=\frac{1}{\mathrm{RC}} \mathrm{V}_{\text {in }} \times \mathrm{t}$
$8=\frac{1}{\mathrm{R} \times 47 \times 10^{-6}} \times 6 \times 0 \cdot 2$
$\mathrm{R}=\frac{6 \times 0 \cdot 2}{8 \times 47 \times 10^{-6}}$
$\mathrm{R}=3191 \Omega=3 \cdot 19 \mathrm{k} \Omega$
(ii)

Marks

Q9
(c) $\quad \mathrm{V}_{\text {out }}=\frac{1}{255} \times 9 \mathrm{~V}=0 \cdot 03529$ Vincrements
$-0.03529=\frac{-15}{\text { Ro }} \times 6$
$\mathrm{R}_{\mathrm{o}}=\frac{15 \times 6}{0.03529}$
$\mathrm{R}_{\mathrm{o}}=2550 \mathrm{k} \Omega$
Resistor ladder is:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}=2550 \mathrm{k} \Omega \\
& \mathrm{R}_{1}=1275 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=638 \mathrm{k} \Omega \\
& \mathrm{R}_{3}=319 \mathrm{k} \Omega \\
& \mathrm{R}_{4}=159 \mathrm{k} \Omega \\
& \mathrm{R}_{5}=79.7 \mathrm{k} \Omega \\
& \mathrm{R}_{6}=39.8 \mathrm{k} \Omega \\
& \mathrm{R}_{7}=19.9 \mathrm{k} \Omega
\end{aligned}
$$

Marks	
1	
1	
1	
1	

Q10

(a) Sub-system A: The voltage divider $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ and $\left.\mathrm{R}_{\mathrm{f}}\right)$ provide a reference into the non-inverting input.
When non-inverting > inverting input, output is 5 V .
Rate of charge of capacitor determined by resistance of proximity sensor (frequency).
When inverting input > non-inverting, output goes low, capacitor discharges and device oscillates.
Soft Stop is caused by proximity sensor resistance increasing causing frequency to decrease.

Sub-system B: Sub-system A clocks the 4 D-types.
$\overline{\mathrm{Q}}$ from B causes a zero on D for two pulses, then two ' 1 's repeating.
Coils are energised by Q going high.

Any 8 points at 1 mark each
(b) Switch-off threshold $=3 \cdot 5 \mathrm{~V}$
$\therefore \mathrm{V}_{\text {out }}$ is presently high: $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$

$\frac{\mathrm{R}_{\mathrm{p}}}{10}=\frac{1 \cdot 5}{3 \cdot 5}$
$\mathrm{R}_{\mathrm{p}}=\frac{1 \cdot 5 \times 10}{3 \cdot 5}=4 \cdot 29 \mathrm{k} \Omega$
$4 \cdot 29=\frac{9 \times R_{f}}{9+R_{f}}$
$\left(9+R_{f}\right) 4 \cdot 29=9 R_{f}$
$38 \cdot 6+4 \cdot 29 \mathrm{R}_{\mathrm{f}}=9 \mathrm{R}_{\mathrm{f}}$
$4.71 \mathrm{R}_{\mathrm{f}}=38.6$
$\mathrm{R}_{\mathrm{f}}=8 \cdot 20 \mathrm{k} \Omega$

9 k and R_{f} in parallel

$$
\left.\begin{array}{l}
\mathrm{V}_{\text {lower }}=3.5 \mathrm{~V} \\
\mathrm{~V}_{\text {upper }}=1.5 \mathrm{~V}
\end{array}\right\}
$$

Marks
1
(d) (ii)

$$
\begin{aligned}
& \delta=\frac{\mathrm{FL}^{3}}{3 \mathrm{EI}} \\
& \delta=\left(2000 \times 1000^{3}\right) /(3 \times 196000 \times 800000) \\
& \delta=\left(2 \times 10^{12}\right) /\left(470.4 \times 10^{9}\right) \\
& \delta=4.25 \mathrm{~mm}
\end{aligned}
$$

Marks

$800000=\left(\mathrm{BD}^{3} / 12\right)-\left(\mathrm{bd}^{3} / 12\right)$
$800000=\left(80^{4} / 12\right)-\left(\mathrm{bd}^{3} / 12\right)$
$800000=\left(3413333-\left(\mathrm{bd}^{3} / 12\right)\right.$
$2613333=d^{4} / 12(b=d)$
$\mathrm{d}^{4} / 12=2613333$
$d^{4} \quad=31360000$
$\mathrm{d} \quad=74.83 \mathrm{~mm}$
$\mathrm{t} \quad=\frac{80-74 \cdot 83}{2}$
$\mathrm{t} \quad=2.58 \mathrm{~mm}$
$\mathrm{M}=\mathrm{FL}=2000 \times 1000=2 \times 10^{6} \mathrm{Nmm}$
$\mathrm{I}=\mathrm{My} / \sigma=\left(2 \times 10^{6} \times 40\right) / 100=800000 \mathrm{~mm}^{4}$

Q11

$\left.\begin{array}{lll}\text { (a) alert: } & \text { clrf } & \text { DISTRESS } \\ & \text { call } & \text { S_TEST } \\ \text { call } & \text { O_TEST } \\ \text { call } & \text { S_TEST }\end{array}\right] \quad$ (for both 'S')
(b) S_TEST: clrf DOTCOUNT $\left.\begin{array}{ll}\text { movlw } & d^{‘} 3 \\ \text { movwf } & \text { COUNTER }\end{array}\right\}$
loop: btfss PORTB, O goto loop
$\left.\begin{array}{ll}\text { movlw } & d^{\prime} 1^{\prime} \\ \text { call } & \text { wait }\end{array}\right\}$
btfss PORTB, O
incf DOTCOUNT, F
decfsz COUNTER, F
goto loop
movfw DOTCOUNT
xorlw d‘3'
btfsc STATUS, Z
incf DISTRESS
return

Marks	
1	
1	
1	
1	
1	
1	
1	$\mathbf{8}$
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

(c)

$\frac{\Sigma \mathrm{M}_{\mathrm{NA}}=0+\boldsymbol{L}}{-(10 \times 4)-\left(\mathrm{M}_{1} \times 2\right)=0}$
$M_{1}=\frac{-40}{2}=-20 \mathrm{kN}($ STRUT $)$

$-20+6+2 \cdot 5 \mathrm{M}_{3}=0$
$M_{3}=\frac{+14}{2 \cdot 45}$
$\mathrm{M}_{3}=+5 \cdot 71 \mathrm{kN}(\mathrm{TIE})$

$\sin 60^{\circ}=\frac{\text { perp }}{2 \cdot 828}$
perp $=2 \cdot 828 \sin 60^{\circ}$
perp $=2 \cdot 45 \mathrm{~m}$

hyp $=\sqrt{8}=2 \cdot 828 \mathrm{~m}$

$\Sigma \mathrm{V}=0 \uparrow+$
$-10+20-5 \cdot 71 \cos 15^{\circ}-\mathrm{M}_{2} \cos 45^{\circ}=0$
$-10+20-5 \cdot 51=\mathrm{M}_{2} \times 0 \cdot 707$
$\mathrm{M}_{2}=\frac{+4 \cdot 49}{0 \cdot 707}$
$\mathrm{M}_{2}=+6 \cdot 35 \mathrm{kN}($ TIE $)$

Marks

