|            | KU | PS |
|------------|----|----|
| Total Mark |    |    |

# 3700/31/01

NATIONAL MONDAY, 30 APRIL QUALIFICATIONS 1.00 PM - 2.30 PM 2012

| SCIENCE       |    |
|---------------|----|
| STANDARD GRAI | DE |
| Credit Level  |    |

| Fill in these boxes and read what is printed below.                                                 |                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Full name of centre                                                                                 | Town                                       |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
| Forename(s)                                                                                         | Surname                                    |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
| Date of birth<br>Day Month Year Scottish candidate numb                                             | er Number of seat                          |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
| 1 Answer as many questions as you can.                                                              |                                            |  |  |  |  |  |
| 2 Read the whole of each question carefully before years                                            | ou answer it.                              |  |  |  |  |  |
| 3 Write your answers in the spaces provided. Showing                                                | ng working may help in some questions.     |  |  |  |  |  |
| 4 Before leaving the examination room you must give not, you may lose all the marks for this paper. | ve this book to the Invigilator. If you do |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |
|                                                                                                     |                                            |  |  |  |  |  |





|                                                                                             |       | DO N<br>WR<br>IN T<br>MAR | ITE<br>THIS |
|---------------------------------------------------------------------------------------------|-------|---------------------------|-------------|
| <b>1.</b> The diagram below shows part of the respiratory system.                           | Marks | KU                        | PS          |
| windpipe<br>air sac                                                                         |       |                           |             |
| (a) $\overrightarrow{\text{Circle}}$ the correct words to complete the following sentences. |       |                           |             |
| (i) The windpipe is kept open by rings of fibre .<br>cartilage                              | 1     |                           |             |
| (ii) The windpipe divides into two bronchi bronchioles .                                    | 1     |                           |             |
| ( <i>b</i> ) Name the type of blood vessel which surrounds the air sacs.                    |       |                           |             |
|                                                                                             | 1     |                           |             |
| (c) Describe the self-cleaning mechanism of the lungs.                                      |       |                           |             |
|                                                                                             | 2     |                           |             |
|                                                                                             |       |                           |             |
|                                                                                             |       |                           |             |

|              |                         | ng carbon dioxi<br>nental changes.                 |                                                                                                       | nosphere is responsible for                                                                                                                                 | Marks | KU | PS |
|--------------|-------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
| ( <i>a</i> ) | (i)                     | Give <b>one</b> rea<br>atmosphere is               |                                                                                                       | xide concentration in the                                                                                                                                   |       |    | _  |
|              | (ii)                    |                                                    |                                                                                                       | anges that have been linked<br>on in the atmosphere.                                                                                                        | 1     |    |    |
|              |                         | 1                                                  |                                                                                                       |                                                                                                                                                             |       |    |    |
|              |                         | 2                                                  |                                                                                                       |                                                                                                                                                             | 2     |    |    |
| ( <i>b</i> ) | harn                    | upper layer of<br>nful solar radia<br>ne this gas. | -                                                                                                     | gas which protects us from                                                                                                                                  |       |    |    |
|              |                         |                                                    |                                                                                                       |                                                                                                                                                             |       |    |    |
|              |                         |                                                    | ce gases that are harmful to<br>w.                                                                    |                                                                                                                                                             | 1     |    |    |
| Cor          |                         | plastics produc                                    | ce gases that are harmful to                                                                          | humans.                                                                                                                                                     | 1     |    |    |
| Cor          | <br>rning<br>mplet      | plastics produc                                    | ce gases that are harmful to<br>ow.<br><i>Harmful gas produced</i>                                    | humans.<br>Effect of harmful gas on                                                                                                                         | 1     |    |    |
|              | rning<br>mplet<br>astic | plastics produc                                    | ce gases that are harmful to<br>ow.<br>Harmful gas produced<br>when plastic burns                     | <ul> <li>humans.</li> <li>Effect of harmful gas on the human body</li> <li>damages the brain and</li> </ul>                                                 | 1     |    |    |
| Pla          | rning<br>mplet<br>astic | plastics produc<br>te the table belo<br>yrene      | ce gases that are harmful to<br>ow.<br>Harmful gas produced<br>when plastic burns                     | <ul> <li>humans.</li> <li><i>Effect of harmful gas on the human body</i></li> <li>damages the brain and nervous system</li> <li>stops blood from</li> </ul> | 1     |    |    |
| Pla          | rning<br>mplet<br>astic | plastics produc<br>te the table belo<br>yrene      | ce gases that are harmful to<br>ow.<br>Harmful gas produced<br>when plastic burns<br>hydrogen cyanide | <ul> <li>humans.</li> <li><i>Effect of harmful gas on the human body</i></li> <li>damages the brain and nervous system</li> <li>stops blood from</li> </ul> |       |    |    |

|      |                          |                          |                                        |         | IN ' | RGIN |
|------|--------------------------|--------------------------|----------------------------------------|---------|------|------|
|      |                          |                          |                                        | . Marks |      | PS   |
|      | nvestigation v<br>Found. | was carried out to find  | l out how light affects where woodl    | ıce     |      |      |
|      |                          | re placed in a tray with | a plastic lid. Half of the lid was bla | ack     |      |      |
|      |                          | The other half was cl    |                                        |         |      |      |
| Afte | r 1 minute th            | e number of woodlice     | in each half of the tray was recorded  | ed.     |      |      |
|      | r                        |                          | 1.1                                    |         |      |      |
|      | l                        |                          | lid                                    |         |      |      |
|      |                          |                          | tray                                   |         |      |      |
|      |                          |                          | woodlouse                              |         |      |      |
| Resi | ults                     |                          |                                        |         |      |      |
|      | Number                   | of woodlice in light     | Number of woodlice in dark             |         |      |      |
|      |                          | 1                        | 1                                      |         |      |      |
|      |                          |                          |                                        |         | 1    |      |
|      | gest <b>two imp</b>      |                          |                                        |         |      |      |
|      |                          |                          |                                        |         |      |      |
|      |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |
| 1    |                          |                          |                                        | 2       |      |      |

5. The boxes below describe some properties of materials.

| 1                                         | 2                              | 3                                  |
|-------------------------------------------|--------------------------------|------------------------------------|
| supports a heavy load<br>without breaking | allows heat to pass<br>through | allows electricity to pass through |
| 4 bends without snapping                  | 5<br>catches fire easily       | 6<br>resists damage by<br>impact   |

## Which box describes

| ( <i>a</i> ) | flammability?         | Box number |
|--------------|-----------------------|------------|
| ( <i>b</i> ) | thermal conductivity? | Box number |
| ( <i>c</i> ) | flexibility?          | Box number |
| (d)          | hardness?             | Box number |

1

1

1

1

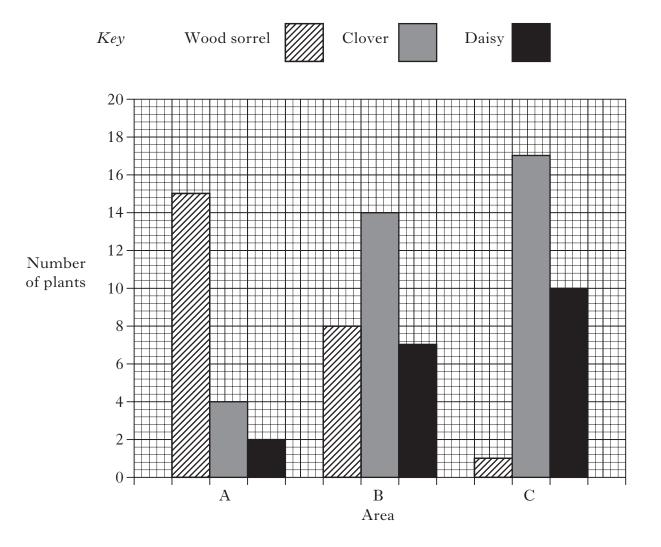
DO NOT WRITE IN THIS MARGIN

KU PS

Marks

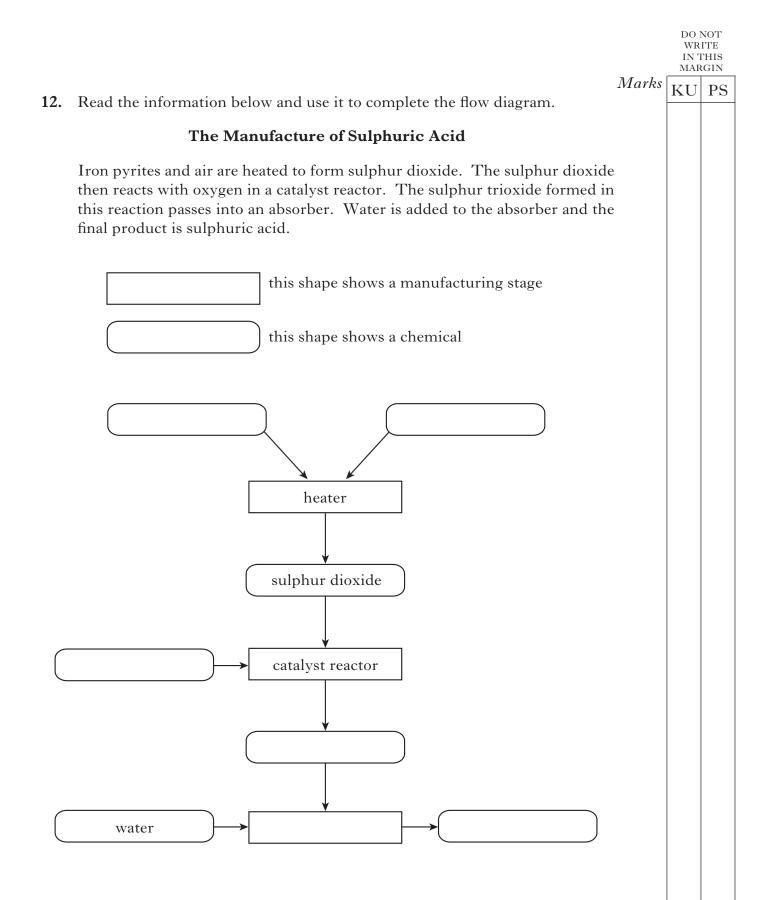
#### [Turn over

DO NOT WRITE IN THIS MARGIN Marks ΚU PS Use the information in the passage below to answer the questions. 6. Lactose intolerance is the inability to digest lactose, the main sugar in milk. Normally, the cells that line the small intestine produce an enzyme called lactase. Lactase digests the milk sugar by breaking it down into simple substances, such as glucose, that can be absorbed into the blood. If the small intestine is not producing lactase, the body cannot digest lactose. This leads to symptoms of lactose intolerance, such as nausea and diarrhoea. Many people with lactose intolerance also suffer from bloating, which is a build up of gas in the intestine caused by the action of bacteria on undigested lactose. Most babies produce high levels of lactase, enabling the digestion of milk. After the age of 2 years, the body begins to produce less lactase. In some individuals, the body fails to produce enough lactase, leading to the development of lactose intolerance in older children and adults. The most common diagnostic tests for this condition are known as the *lactose* tolerance test and the hydrogen breath test. Both tests involve giving the patient a drink with a high concentration of lactose. For the lactose tolerance test, blood samples are taken to measure the blood glucose level. This shows how well lactose is being digested. For the hydrogen breath test, breath samples are analysed at regular intervals. Raised levels of hydrogen indicate the presence of undigested lactose in the intestine. These tests are not given to babies and very young children as the high lactose drink may cause diarrhoea and severe dehydration. Many doctors simply recommend changing the child's diet from dairy milk to a non-dairy alternative, such as soya milk. (a) State **two** symptoms of lactose intolerance. 1 (b) Why do most babies produce high levels of lactase? 1 (c) Why does lactose intolerance develop in some older children and adults? 1


|    |              |       |                                            |                                                      | Marks | DO I<br>WR<br>IN 7<br>MAR | ITE<br>THIS<br>GIN |
|----|--------------|-------|--------------------------------------------|------------------------------------------------------|-------|---------------------------|--------------------|
| 6. | (co          | ntinu | ied)                                       |                                                      |       | KU                        | PS                 |
|    | ( <i>d</i> ) |       | e <b>one</b> way in wl<br>ogen breath test | nich the <i>lactose tolerance test</i> and the       |       |                           |                    |
|    |              | (i)   | are similar.                               |                                                      |       |                           |                    |
|    |              |       |                                            |                                                      | 1     |                           |                    |
|    |              | (ii)  | are different.                             |                                                      |       |                           |                    |
|    |              |       |                                            |                                                      | 1     |                           |                    |
|    | ( <i>e</i> ) | Expl  | ain why the dia                            | ignostic tests are not given to very young children. |       |                           |                    |
|    |              | ••••• |                                            |                                                      | 1     |                           |                    |

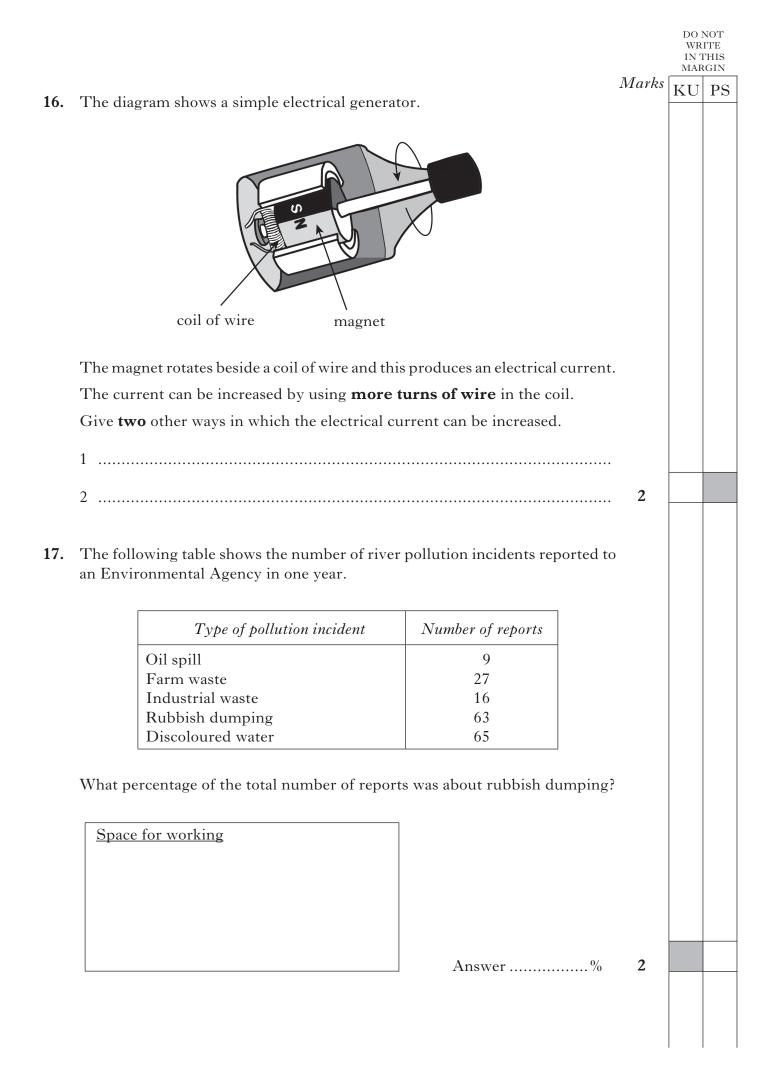
[Turn over

DO NOT WRITE IN THIS MARGIN Marks KU| PS The pie charts below show the composition of different types of brass. 7. Gilding Red Key zinc Cartridge Muntz copper The table below shows some of the properties of the different types of brass. Tensile strength Hardness Type of brass (MPa) (units) Gilding 245 52 Red 280 64 Cartridge 357 72 Muntz 378 80 (a) What conclusion can be drawn about the **composition** of brass and its hardness? ..... 1 ..... (b) Predict the tensile strength of brass which contains 75% copper. ..... MPa 1


|   |                                 |                                           |                                       |                           |                   |    | NOT<br>ITE<br>FHIS<br>RGIN |
|---|---------------------------------|-------------------------------------------|---------------------------------------|---------------------------|-------------------|----|----------------------------|
| • | Natural disaster<br>habitat.    | s can limit the gro                       | wth in the number of                  | organisms living in       | <i>Marks</i><br>a | KU | PS                         |
|   | ( <i>a</i> ) Give <b>one</b> of | other factor which<br>iving in a habitat. | a can limit the grow                  | th in the number o        | of<br>1           |    |                            |
|   | (b) What word living in a h     |                                           | be the number of org                  | ganisms of <b>one typ</b> |                   |    |                            |
|   |                                 |                                           |                                       |                           | 1                 |    |                            |
|   | Use words from                  | the boxes to answ                         | er the questions.                     |                           |                   |    |                            |
|   | anodising                       | electroplating                            | packaging                             | waterproofing             |                   |    |                            |
|   | galvanising                     | spray painting                            | pesticide treatment                   | alloying                  |                   |    |                            |
|   |                                 |                                           | of a bicycle?<br>ectronic components? |                           | . 1               |    |                            |
|   | (c) protect walk                | xing boots?                               |                                       |                           | . 1               |    |                            |
|   | ( <i>d</i> ) cover a steel      | l lamp post with a                        | layer of zinc?                        |                           | . 1               |    |                            |
|   |                                 |                                           |                                       | [Turn ove                 | r                 |    |                            |
|   |                                 |                                           |                                       |                           |                   |    |                            |

**10.** A group of students investigated the effect of light intensity on the numbers of wild plants in a woodland. They counted the numbers of wood sorrel, clover and daisies in areas A, B and C. For each area they recorded the light intensity. The results are shown in the bar graph and table below.



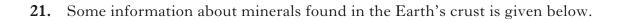

| Area | Light intensity<br>(units) |
|------|----------------------------|
| А    | 5                          |
| В    | 10                         |
| С    | 15                         |

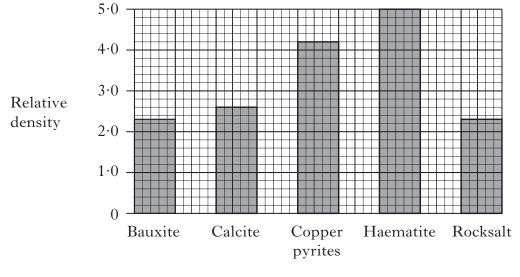
|   |              |                                             |                       |                                                     | 7.6    | WR<br>IN '<br>MAI | NOT<br>AITE<br>THIS<br>RGIN |
|---|--------------|---------------------------------------------|-----------------------|-----------------------------------------------------|--------|-------------------|-----------------------------|
| • | (co          | ntinued)                                    |                       |                                                     | Marks  | KU                | PS                          |
|   | ( <i>a</i> ) | Draw <b>two</b> conclusions the table.      | s using information   | from <b>both</b> the bar graph <b>an</b>            | d      |                   |                             |
|   |              | 1                                           |                       |                                                     |        |                   |                             |
|   |              |                                             |                       |                                                     |        |                   |                             |
|   |              | 2                                           |                       |                                                     |        |                   |                             |
|   |              |                                             |                       |                                                     | . 2    |                   | _                           |
|   | ( <i>b</i> ) | What is the light inter plants?             | nsity in the area wi  | th the highest total number o                       | of     |                   |                             |
|   |              |                                             | units                 |                                                     | 1      |                   | _                           |
|   | ( <i>c</i> ) | Predict the number of intensity of 7 units. | f wood sorrel plant   | ts in an area which has a ligh                      | ıt     |                   |                             |
|   |              |                                             |                       |                                                     | 1      |                   |                             |
| • | The          | e boxes below show som                      | ne gases.             | 3                                                   |        |                   |                             |
|   |              | oxygen                                      | <br>carbon monoxide   | ozone                                               |        |                   |                             |
|   | 4            | 5                                           |                       | 6                                                   |        |                   |                             |
|   |              | CFCs                                        | oxides of nitrogen    | sulphur dioxide                                     |        |                   |                             |
|   | (a)          | Which <b>two</b> boxes show                 | v a gas that causes a | ncid rain?                                          |        |                   |                             |
|   |              | Boxes                                       | and                   |                                                     | 2      |                   |                             |
|   |              |                                             |                       |                                                     |        |                   |                             |
|   | (b)          | Which box shows the a car engine?           | gas formed by inco    | mplete combustion of petrol in                      | n      |                   |                             |
|   | ( <i>b</i> ) |                                             |                       | mplete combustion of petrol in                      | n<br>1 |                   |                             |
|   | (b)          | a car engine?                               |                       | mplete combustion of petrol in                      |        |                   |                             |
|   | (b)          | a car engine?                               |                       | mplete combustion of petrol in<br>[ <b>Turn ove</b> | 1      |                   |                             |



|     |                                                    |                                               |                   |        | DO NOT<br>WRITE<br>IN THIS<br>MARGIN |
|-----|----------------------------------------------------|-----------------------------------------------|-------------------|--------|--------------------------------------|
| 13. | Use words from the bo                              | oxes to answer the quest                      | ions.             | Marks  | KU PS                                |
|     | oxidation                                          | gravity survey                                | distillation      |        |                                      |
|     | combustion                                         | test drilling                                 | mining            |        |                                      |
|     | ( <i>a</i> ) Which process is u                    | used to separate crude o                      |                   | 1      |                                      |
|     |                                                    | sses are used to detect of                    | il bearing rocks? |        |                                      |
| 14. | In a factory making fer<br>reactors are made of st |                                               |                   |        |                                      |
|     |                                                    | f how corrosion of the foreating the factory. |                   |        |                                      |
|     | 2                                                  |                                               |                   |        |                                      |
|     | 2                                                  |                                               |                   | 2      |                                      |
|     |                                                    |                                               | [Tur              | n over |                                      |
|     |                                                    |                                               |                   |        |                                      |
|     |                                                    |                                               |                   |        |                                      |
|     |                                                    |                                               |                   |        |                                      |

|                                              | Percentage heing trea                   | ted for heart disease (%) |   |  |
|----------------------------------------------|-----------------------------------------|---------------------------|---|--|
| Age range<br>(years)                         | men                                     | women                     |   |  |
| 45 - 54<br>55 - 64<br>65 - 74<br>75 - 84     | 3<br>9<br>17<br>20                      | 1<br>5<br>11<br>16        |   |  |
|                                              |                                         |                           |   |  |
| (b) In a sample of 250                       | women aged 75–84 years,<br>art disease. |                           | 2 |  |
|                                              | women aged 75-84 years,                 |                           |   |  |
| (b) In a sample of 250 being treated for hea | women aged 75-84 years,                 |                           |   |  |





Page fifteen

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |      |      |   |     | <br> | <br>       |                |                          |    |    |     |    | <i>duc</i> |    |    |                  |   |                   |        |      |   |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|------|---|-----|------|------------|----------------|--------------------------|----|----|-----|----|------------|----|----|------------------|---|-------------------|--------|------|---|---|--|
| Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ilfield               |      |      | ŀ |     | <br> | <br>2(     | (*<br>004      | $\frac{(\text{tho})}{4}$ | ou | sa | inc | ls | ot         | to | nn | ies <sub>.</sub> | - | 200               | 6      | <br> |   |   |  |
| Thi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chan<br>istle<br>rtan |      |      |   |     | <br> | <br>3<br>1 | 70<br>80<br>75 | )                        |    |    |     |    |            |    |    |                  | • | 320<br>160<br>10: | )<br>) |      |   |   |  |
| <ul> <li>(a) Construct (Addition</li> <li>(b) Calculate between</li> <li>(b) Space for the second se</li></ul> | te the a 2004         | grap | erce |   | age |      |            |                | is                       |    |    |     |    |            |    |    |                  |   |                   | nty-   |      | d | 3 |  |

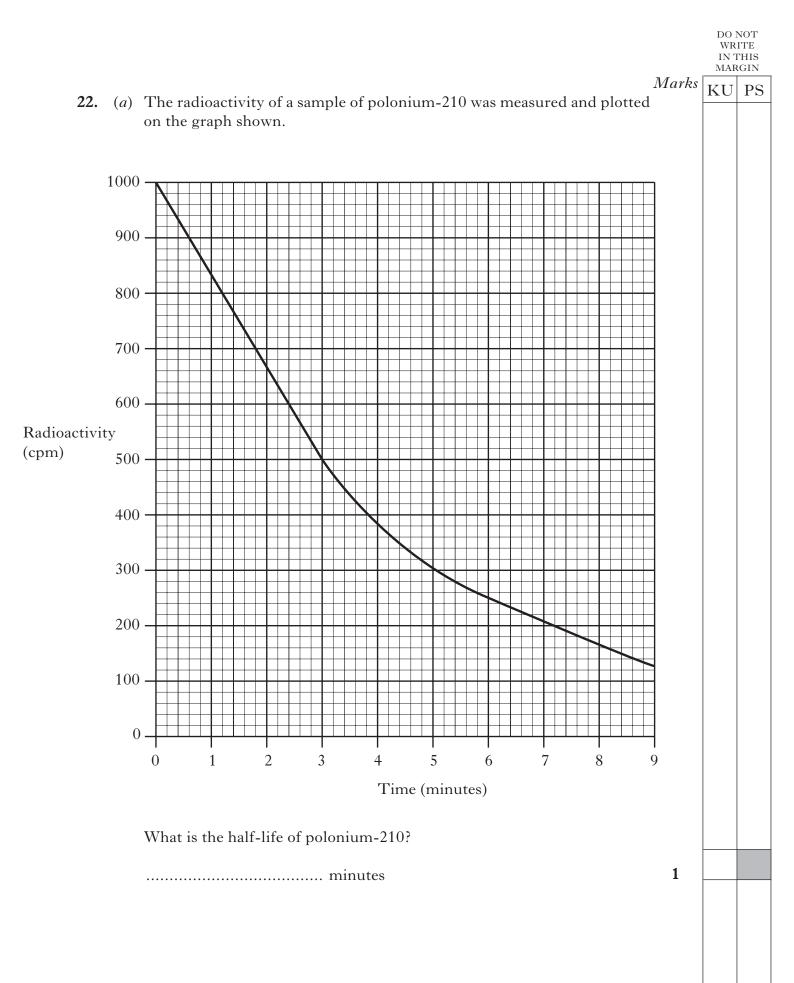
|     |              |                                                                                         |       | DO N<br>WRI<br>IN T<br>MAR | TE<br>HIS |
|-----|--------------|-----------------------------------------------------------------------------------------|-------|----------------------------|-----------|
| 19. | Wh           | ich of the following statements correctly describes a heart attack?                     | Marks | KU                         | PS        |
|     |              | The coronary vein is blocked and prevents carbon dioxide getting to the heart muscle.   |       |                            |           |
|     | В.           | The coronary artery is blocked and prevents carbon dioxide getting to the heart muscle. |       |                            |           |
|     | C.           | The coronary vein is blocked and prevents oxygen getting to the heart muscle.           |       |                            |           |
|     | D.           | The coronary artery is blocked and prevents oxygen getting to the heart muscle.         |       |                            |           |
|     | <u>Un</u>    | <b>derline</b> the correct answer.                                                      | 1     |                            |           |
| 20. | Th           | e diagram shows parts of human blood.                                                   |       |                            |           |
|     |              |                                                                                         |       |                            |           |
|     |              | Red blood cells Platelets White blood cells                                             |       |                            |           |
|     | ( <i>a</i> ) | Name the chemical in red blood cells which carries oxygen.                              | 4     |                            |           |
|     | ( <i>b</i> ) | What is the function of the platelets?                                                  | 1     |                            |           |
|     |              |                                                                                         | 1     |                            |           |
|     | ( <i>c</i> ) | The treatment used to stimulate white blood cells to produce antibodies is              |       |                            |           |
|     |              | A hypothermia                                                                           |       |                            |           |
|     |              | B immunisation                                                                          |       |                            |           |
|     |              | C accumulation                                                                          |       |                            |           |
|     |              | D respiration.                                                                          |       |                            |           |
|     |              | <u><b>Underline</b></u> the correct answer.                                             | 1     |                            |           |
|     |              |                                                                                         |       |                            |           |
|     |              | [Turn over                                                                              |       |                            |           |

| Mineral           | Supply in<br>Earth's<br>crust | Annual world<br>production<br>(million tonnes) | Hardness<br>value | Reaction with acid |
|-------------------|-------------------------------|------------------------------------------------|-------------------|--------------------|
| Bauxite           | plentiful                     | 80                                             | 2.0               | no gas given off   |
| Calcite           | plentiful                     | 1500                                           | 3.5               | gas given off      |
| Copper<br>pyrites | limited                       | 20                                             | 4.2               | no gas given off   |
| Haematite         | plentiful                     | 900                                            | 5.2               | no gas given off   |
| Rocksalt          | plentiful                     | 150                                            | 2.2               | no gas given off   |





Mineral


The **relative density** of a mineral is a measure of its density compared to water.

The **hardness** of a mineral is tested by scratching it. A mineral with a higher hardness value can scratch any mineral with a lower hardness value.

Carbonate minerals react with acid to give off **gas**.

|     |              |                                                                                         |       | DO I<br>WR<br>IN T<br>MAR | ITE<br>THIS |
|-----|--------------|-----------------------------------------------------------------------------------------|-------|---------------------------|-------------|
| 21. | (co          | ntinued)                                                                                | Marks | KU                        | PS          |
|     | Use          | <b>all</b> of the information to answer the following questions.                        |       |                           |             |
|     |              | What is the relative density of the mineral with a limited supply in the Earth's crust? |       |                           |             |
|     |              |                                                                                         | 1     |                           |             |
|     | ( <i>b</i> ) | Which mineral is a carbonate?                                                           |       |                           |             |
|     |              |                                                                                         | 1     |                           |             |
|     | ( <i>c</i> ) | A fingernail has a hardness value of $2.5$ .                                            |       |                           |             |
|     |              | List all the minerals that can be scratched by a fingernail.                            |       |                           |             |
|     |              |                                                                                         | 1     |                           |             |
|     | ( <i>d</i> ) | What is the annual production of the mineral which has a relative density of $2.6$ ?    |       |                           |             |
|     |              | million tonnes                                                                          | 1     |                           |             |
|     |              |                                                                                         |       |                           |             |

[Turn over



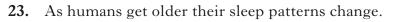
# 22. (continued)

(b) The table gives information about three radioactive substances.

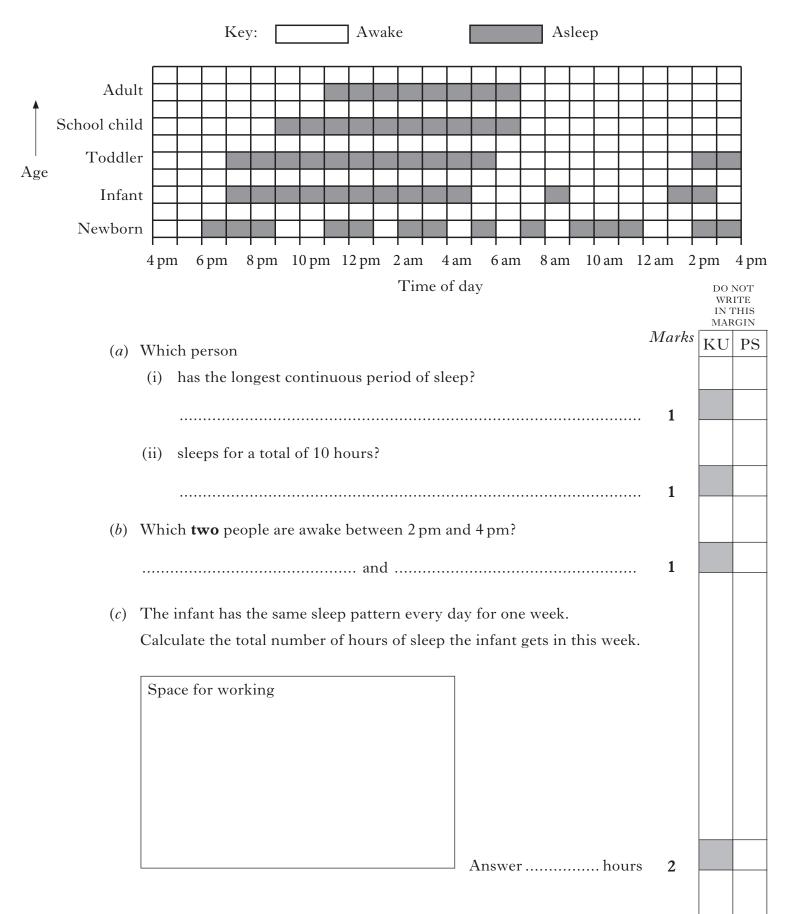
| Radioactive Substance | Half-life    |
|-----------------------|--------------|
| Bismuth-212           | 60.6 minutes |
| Radon-220             | 55·0 seconds |
| Lead-212              | 10.6 hours   |

Which radioactive substance must be stored for the longest time before it becomes safe?

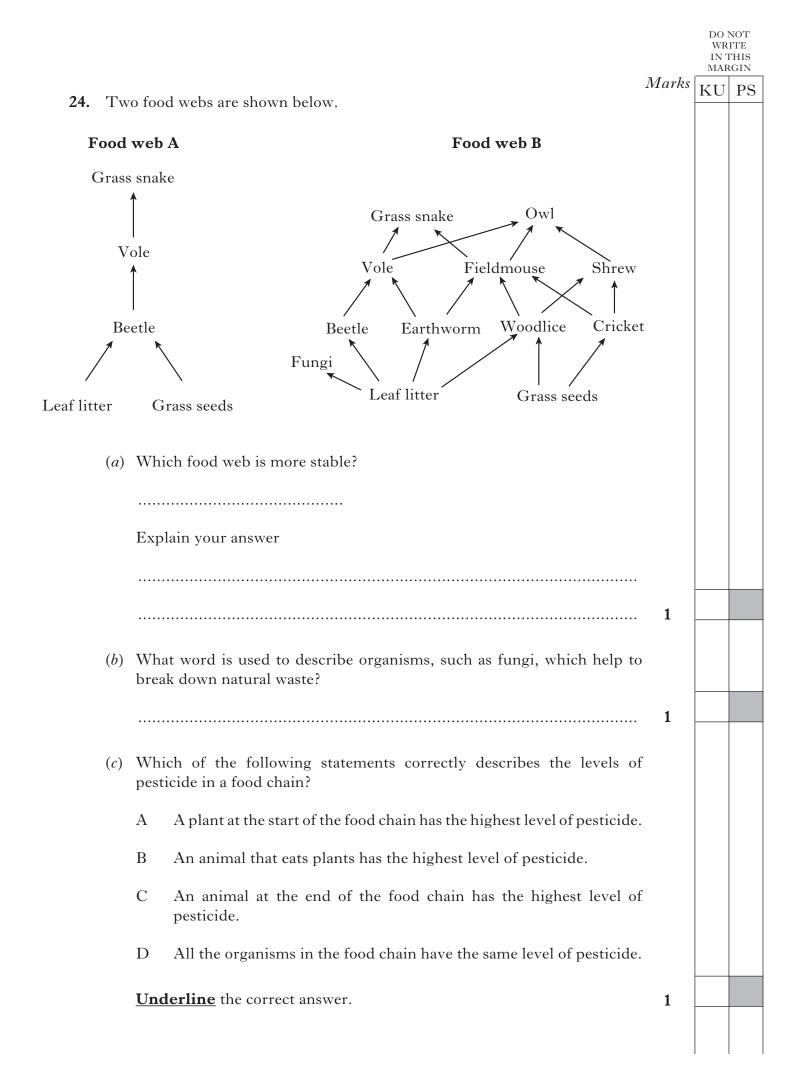
.....


[Turn over

DO NOT WRITE IN THIS MARGIN


KU PS

Marks


1



The chart below shows sleep patterns over a 24 hour period for five people.

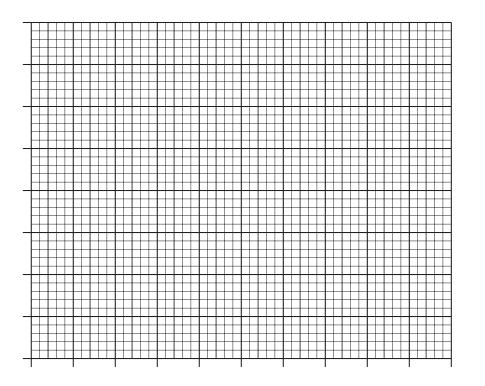


Page twenty-two



Page twenty-three

DO NOT WRITE IN THIS MARGIN


Marks KU PS

**25.** The table below shows the mass of ammonia produced at different temperatures and pressures.

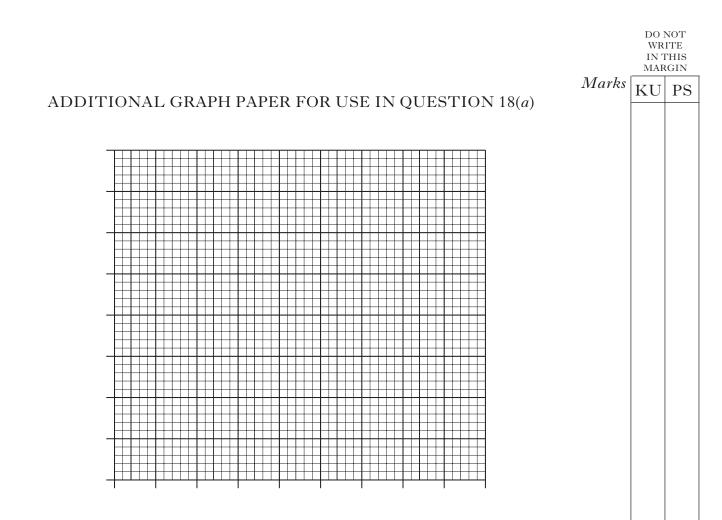
| Pressure | Mass of ammonia (tonnes) |            |  |  |  |  |  |  |
|----------|--------------------------|------------|--|--|--|--|--|--|
| (atm)    | at 350 ° C               | at 450 ° C |  |  |  |  |  |  |
| 50       | 600                      | 300        |  |  |  |  |  |  |
| 100      | 900                      | 600        |  |  |  |  |  |  |
| 150      | 1100                     | 800        |  |  |  |  |  |  |
| 200      | 1300                     | 900        |  |  |  |  |  |  |
| 250      | 1400                     | 1000       |  |  |  |  |  |  |

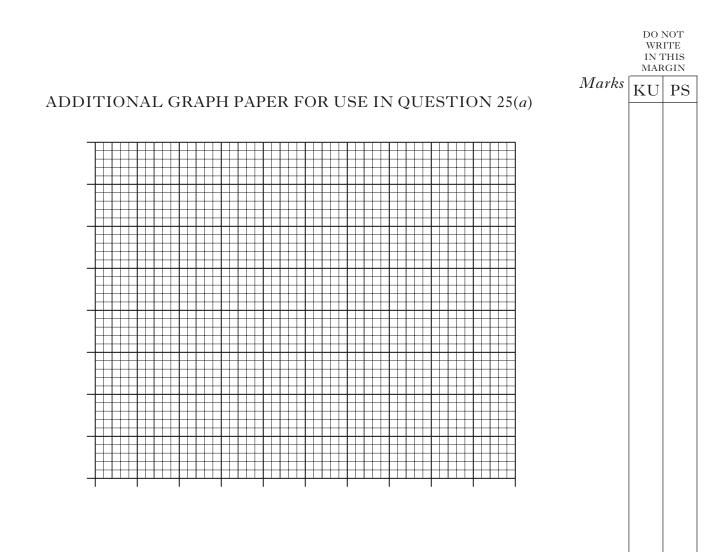
(a) Using the same axes, show the results as two line graphs. Label each line clearly.

(Additional graph paper, if required, can be found on Page twenty-six.)



3


1


(*b*) Predict the mass of ammonia formed at a temperature of 400 °C and a pressure of 175 atm.

..... tonnes

### [END OF QUESTION PAPER]

Page twenty-four





[BLANK PAGE]

[BLANK PAGE]