## 2013 Physics

## Intermediate 1

## Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Part One: General Marking Principles for Physics Intermediate 1

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

## GENERAL MARKING ADVICE: Physics Intermediate 1

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

| 1. | Answers $V=I R$ | $\begin{aligned} & \text { Mark + Comment } \\ & (1 / 2) \end{aligned}$ | Issue <br> Ideal answer |
| :---: | :---: | :---: | :---: |
|  | $7 \cdot 5=1 \cdot 5 R$ | (1/2) |  |
|  | $R=5.0 \Omega$ | (1) |  |
| 2. | $5.0 \Omega$ | (2) Correct answer | GMI 1 |
| 3. | $5 \cdot 0$ | (112) Unit missing | GMI 2 (a) |
| 4. | $4.0 \Omega$ | (0) No evidence/wrong answer | GMI 1 |
| 5. | $\ldots$ | (0) No final answer | GMI 1 |
| 6. | $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0 \Omega$ | (11/2) Arithmetic error | GMI 7 |
| 7. | $R=\frac{V}{I}=4.0 \Omega$ | (1/2) Formula only | GMI 4 and 1 |
| 8. | $R=\frac{V}{I}=\_\Omega$ | (1/2) Formula only | GMI 4 and 1 |
| 9. | $R=\frac{V}{I}=\frac{7.5}{1.5}=\ldots \Omega$ | (1) Formula + subs/No final answer | GMI 4 and 1 |
| 10. | $R=\frac{V}{I}=\frac{7 \cdot 5}{1 \cdot 5}=4 \cdot 0$ | (1) Formula + substitution | GMI 2 (a) and 7 |
| 11. | $R=\frac{V}{I}=\frac{1 \cdot 5}{7 \cdot 5}=5 \cdot 0 \Omega$ | (1⁄2) Formula but wrong substitution | GMI 5 |
| 12. | $R=\frac{V}{I}=\frac{75}{1.5}=5 \cdot 0 \Omega$ | (1/2) Formula but wrong substitution | GMI 5 |
| 13. | $R=\frac{I}{V}=\frac{7 \cdot 5}{1.5}=5 \cdot 0 \Omega$ | (0) Wrong formula | GMI 5 |
| 14. | $V=I R \quad 7.5=1.5 \times R \quad R=0.2 \Omega$ | (11/2) Arithmetic error | GMI 7 |
| 15. | $V=I R$ |  |  |
|  | $R=\frac{I}{V}=\frac{1.5}{7 \cdot 5}=0 \cdot 2 \Omega$ | (1/2) Formula only | GMI 20 |

Part Two: Marking Instructions for each Question

Section A

1. B
2. A
3. A
4. E
5. D
6. B
7. B
8. E
9. C
10. B
11. B
12. A
13. A
14. C
15. A
16. E
17. C
18. D
19. D
20. A

| Sample Answer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |
| :---: | :--- | :---: | :---: |
| 21. (a)The number of waves/cycles produced <br> in one second. | Not 'signals' <br> Amount of waves per <br> second is OK | 1 | 3 |
| (b) (i) $\quad$ Higher | Any clear indication of <br> choice | $1 \bullet$ |  |
| (b) (ii)Moray (Firth Radio) <br> accept Murray (MFR) etc. <br> Must be name not frequency. | If more than one <br> answer apply +/- rule. | $1+$ |  |


| Sample Answer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |
| :---: | :---: | :---: | :---: |
| 22. (a) 36000 (kilometres) | Watch for 360000 -0 mark <br> Incorrect unit -1/2 | $1 \bullet$ | 4 |
| (b) graph drawn correctly | $1 / 2$ mark for line of best fit. e.g. line forced through origin does not gain this $1 / 2$ mark. <br> $-1 / 2$ for each point drawn incorrectly. <br> Watch for only one point plotted correctly ( $1 / 2$ max for line) <br> Watch for a graph does not cover the full range of points. No mark for line (max 1 mark) <br> Line does not need to extend beyond the range of the points. <br> Points only max $11 / 2$. <br> Line must be straight. <br> If candidates have a point wrong and then join the dots (max 1 mark) <br> If candidates plot a point incorrectly and then draw a best fit straight line max $11 / 2$. | $2+$ |  |
| (c) 19.5 hours | Accept 19 to 20 hours <br> Accept answer that agrees with an incorrect graph. Apply same tolerance $+/-1 / 2$ hour. <br> If they have no graph but have a correct answer award the mark. <br> Missing unit $-1 / 2$ | 1+ |  |



| Sample Ans | wer and Mark Allocation | Notes | Inner <br> Margin | Outer Margin |
| :---: | :---: | :---: | :---: | :---: |
| 24. (a) | Current $=$ power/voltage $=1725 / 230=7 \cdot 5 \text { amperes }$ | Standard 2 marks <br> Accept amps/a/A <br> If round off to 8 A- $-1 / 2$ for sig figs | $2 \bullet$ | 5 |
| (b) | Yellow and Green <br> Brown <br> Blue | 3 correct (1 mark). <br> 2 correct ( $1 / 2 \mathrm{mark}$ ) <br> Do not accept old colour system. | 1 |  |
| (c) (i) | 3 (amperes) |  | 1+ |  |
| (c) (ii) | 13 (amperes) |  | 1+ |  |


| Sample Answer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |  |
| :---: | :---: | :--- | :---: | :---: |
| 25. (a) | E |  | 1 | 3 |
| (b) (i) | Z |  | +1 |  |
| (b) (ii) | highest current, (smallest resistance) | Not higher <br> amps/amperes <br> If they say highest | +1 |  |
| resistance gives smallest <br> current 1 mark BUT <br> must make full <br> statement. |  |  |  |  |


| Sample Answer and Mark Allocation | Notes | Inner Margin | Outer <br> Margin |
| :---: | :---: | :---: | :---: |
| 26. (a) a high frequency sound beyond the range of human hearing | Accept "(sound with a) frequency greater than 20000 Hz" <br> Noise is acceptable instead of sound. <br> Sounds that humans can't hear 0 marks <br> Outwith human hearing 0 marks. <br> dB instead of $\mathbf{H z} \mathbf{0}$ marks. <br> Sound level 0 marks. <br> 1 OR 0 | 1 | 4 |
| (b) (i) 0.6 seconds | No unit - $1 / 2$ <br> No secs in physics <br> If they show calculation but wrong answer 0 marks in this case. | $1 \bullet$ |  |
| $\text { (b) (ii) } \begin{aligned} \text { speed } & =\frac{\text { distance }}{\text { time }} \\ \text { speed } & =\frac{900}{0 \cdot 6} \\ \text { speed } & =1500 \text { metres per second } \end{aligned}$ | Standard 2 marks <br> Time must agree with (b) (i) or be 0.6 seconds otherwise max ${ }^{1 / 2}$ mps $-1 / 2$ <br> If the double the distance instead of halving the time 2 marks | 2 |  |


| Sample Ans | wer and Mark Allocation | Notes | Inner Margin | Outer Margin |
| :---: | :---: | :---: | :---: | :---: |
| 27. (a) | people/bodies give off IR radiation (heat) | Heat signals is OK <br> Heat signature is OK <br> Must indicate that IR/heat is emitted by humans <br> 'people are hot' 0 marks | 1 | 5 |
| (b) (i) | converging (convex) |  | 1 |  |
| (b) (ii) | converging rays ( $1 / 2$ mark) , <br> tending to a focus point ( $1 / 2 \mathrm{mark}$ ) | Ignore rays inside lens | 1 |  |
| (c) | Type of Radiation <br> X-Rays <br> Gamma rays <br> Infrared <br> Ultraviolet | 3 correct ( 2 marks), 2 <br> correct (1 mark), 1 <br> correct ( $1 / 2$ mark) <br> Must use terms from the list - heat is not acceptable for infra red BUT IR and UV are acceptable as abbreviations. | $2 \bullet$ |  |


| Sample Answer and Mark Allocation |  |  | Notes | Inner Margin | Outer Margin |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28. (a) | Output si amplitud <br> frequenc | greater ne | Independent marks <br> Inverted signal is OK <br> Square waves max 1 mark (for frequency) <br> e.g. just redraw original pattern = 1 <br> Does not need to be centred on axis. | 2+ | 5 |
|  | They abs <br> OR <br> Stop vibr | the ear | "reduces sound level to below 80 db to protect hearing" <br> Blocks loud sounds 0 marks <br> Sound waves are reflected 0 marks <br> Sound cancelling 0 marks <br> Dampen noise 0 marks <br> Dampening sound 1 mark | $1+$ |  |
|  | energy <br> vibrates <br> hertz <br> decibels | (1/2) <br> (1/2) <br> (1/2) <br> (1/2) | Must use terms from the list | 2 |  |


| Sample Answer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |
| :---: | :--- | :--- | :---: |
| 29. (a) $\quad$Gain $=$ output voltage / input voltage <br> $=5 / 0 \cdot 02$ <br> $=250$ | Standard 2 marks <br> If unit is given deduct <br> $1 / 2$ mark. | $2 \bullet$ | 4 |
| (b) $\quad$Tuner <br> Amplifier | receiver is incorrect 0 <br> marks | 2 |  |


| Sample | wer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |
| :---: | :---: | :---: | :---: | :---: |
| 30. (a) | $\begin{aligned} & \text { average speed }=\frac{\text { distance }}{\text { time }} \\ & \text { average speed }=\frac{750}{60} \\ & \text { average speed }=12 \cdot 5 \text { metres per second } \end{aligned}$ | Standard 2 marks <br> Not mps <br> Rounded to $13 \mathrm{~m} / \mathrm{s}$ is OK. | 2 | 4 |
| (b) | The forces are balanced | 'The forces are equal' on its own 0 marks. <br> The forces are equal but opposite 1 mark. | 1 |  |
|  | The friction force decreases. <br> OR <br> There is an unbalanced force. <br> OR <br> The forces are no longer balanced. <br> OR <br> There is more friction on the water than in the air. | Some friction in the water but none in the air - 0 marks No friction between the surfer and the water - 1 mark <br> No water resistance 1 mark <br> Less force against them 1 mark | 1+ |  |


| Sam | wer and Mark Allocation | Notes | Inner <br> Margin | Outer <br> Margin |
| :---: | :---: | :---: | :---: | :---: |
| 31. | Metre stick/measuring tape | Ignore anything already given e.g. tennis ball. <br> Ignore anything irrelevant e.g. ladder, stopwatch. | $1 \bullet$ | 3 |
|  | (Height from which tennis ball is dropped) rebound height | How high the ball travels/bounces 1 mark <br> Where the ball bounces to - 0 marks | $1 \bullet$ |  |
|  | The tennis ball is always dropped from the same height <br> OR <br> The method of release is the same e.g. always dropped rather than thrown downwards, the speed of release is always the same etc. <br> OR <br> Ensure the thickness of the surface is the same each time. | Look for one factor/variable that could affect the experiment. <br> Answers must be in the correct box. | $1 \bullet$ |  |


| Sample | wer and Mark Allocation | Notes | Inner <br> Margin | Outer Margin |
| :---: | :---: | :---: | :---: | :---: |
| 32. (a) | Newton(s)/N/n <br> Earth | $1 / 2$ mark each <br> Must be from list | 1 | 5 |
| (b) | $\begin{aligned} & \text { weight }=10 \times \text { mass } \\ & \text { weight }=10 \times 0.5 \\ & \text { weight }=5 \text { newtons } \end{aligned}$ | Standard 2 marks <br> Watch for unit errors | 2 |  |
| (c) | acting up the hill/against the motion of the ball/in the opposite direction to the ball | Not 'up' on its own <br> To the left 0 marks <br> Backwards is OK <br> An arrow showing direction is OK. <br> Against the ball 0 marks <br> Against the direction of the ball 1 mark. | 1+ |  |
| (d) | Less (than) |  | 1+ |  |


| Sample Ans | er and Mark Allocation | Notes | Inner Margin | Outer Margin |
| :---: | :---: | :---: | :---: | :---: |
| 33. (a) | Input Output |  | 1 | 5 |
| (b) (i) | thermistor | Must be from list <br> Circuit symbols are OK | $1 \bullet$ |  |
| (b) (ii) | buzzer | Must be from list <br> Circuit symbols are OK | $1 \bullet$ |  |
| (b) (iii) | switch | If give two answers 0 marks. <br> Circuit symbols are OK | 1+ |  |
| (c) | electrical (energy) to light (energy) | 1 or 0 <br> Electric is OK <br> Electricity 0 marks | 1 |  |


| Sample Answer and Mark Allocation |  |  |  | Notes | Inner Margin | Outer <br> Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34. (a) (i) | AND |  |  |  | 1 | 4 |
| (a) (ii) | (electric) motor |  |  |  | $1 \bullet$ |  |
| (b) | Input A | Input B | Output Z | 1 or 0. <br> Or Consistent with (a) <br> (i) $\begin{aligned} & \text { High = } 1=\text { on } \\ & \text { Low }=0=\text { off } \end{aligned}$ | $1 \bullet$ |  |
|  | 0 | 0 | 0 |  |  |  |
|  | 0 | 1 | 0 |  |  |  |
|  | 1 | 0 | 0 |  |  |  |
|  | 1 | 1 | 1 |  |  |  |
|  | Both inputs must be "high" for the output to be "high" (so when the master switch is off only one input is "high") |  |  | High $=1=$ on | 1+ |  |

