2012 Mathematics

Intermediate 2 - Units 1, 2 and 3, Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles

These principles describe the approach to be taken when marking Intermediate 2 Mathematics papers. For more detailed guidance please refer to the notes which are included with the Marking Instructions.

1 Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.

3 The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values / algebraic expressions.

4 Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).

5 Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.

6 In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.

7 Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

8 Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.

9 Do not penalise the same error twice in the same question.
10 A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.

11 Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.

12 When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1 Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \ltimes.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Mathematics Intermediate 2: Paper 2, Units 1, 2 and 3

Question No	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each -
1.	Ans: $\mathbf{1 2 . 5}$ centimetres - ${ }^{1}$ strategy: express arc as fraction of a circle - ${ }^{2}$ process: correctly calculate length of arc	- ${ }^{1} \quad 110 / 360$ - ${ }^{2} \quad 12.5(\mathrm{~cm})$ 2 marks
NOTES: 1. Acce 2. For	pt 12.5 (12.46 rounded) or 12.4 (12.46 truncated) correct answer without working	award 0/2
2.	Ans: $3 x^{3}+x^{2}-28 x+30$ - ${ }^{1}$ process: start to multiply out brackets - ${ }^{2}$ process: complete process of multiplying out brackets -3 process: collect like terms which must include x^{3}	- ${ }^{1}$ evidence of 3 correct terms $\left(\operatorname{eg} 3 x^{3}+6 x^{2}-18 x\right)$ - $23 x^{3}+6 x^{2}-18 x-5 x^{2}-10 x+30$ -3 $3 x^{3}+x^{2}-28 x+30$ 3 marks
NOTES: 1. Where a candidate has attempted to 'simplify' beyond the correct answer, the $3^{\text {rd }}$ mark is not available		
3.	Ans: 1022 mm 3 - ${ }^{1}$ strategy: know to add volumes of cylinder and sphere - ${ }^{2}$ process: substitute correctly into formula -3 process: substitute correctly into formula - ${ }^{4}$ process: calculate volume correctly	- ${ }^{1}$ evidence - $\quad V=\pi \times 4^{2} \times 15(=753.98)$ - $\quad V=\frac{4}{3} \times \pi \times 4^{3}(=268.08)$ - ${ }^{4} \quad 1022 \cdot(06481)$ 4 marks
NOTES:		
	ommon answer: $50\left(\pi \times 8^{2} \times 15+\frac{4}{3} \times \pi \times 8^{3}\right)$	award 2/4

$\begin{gathered} \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each •
4.	Ans: -2.9, 0.6 - ${ }^{1}$ strategy: know to use quadratic formula - ${ }^{2}$ process: substitute correctly - ${ }^{3}$ process: evaluate discriminant - ${ }^{4}$ process: calculate roots, correct to one d.p.	- $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$ $\bullet^{2} \quad x=\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times-5}}{2 \times 3}$ - $\quad 109$ - ${ }^{4}-2 \cdot 9,0 \cdot 6$ 4 marks
NOTES:		
1. W	Where $b^{2}-4 a c$ is calculated incorrectly, the fourth mark is available only if $b^{2}-4 a c>0$	
2. For	For a correct answer without working award 0/4	

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
5. (a)	Ans: (i) $\mathbf{1 1 6}$ (ii) $\mathbf{1 6 . 3 3}$ - ${ }^{1}$ process: calculate the mean - 2 process: calculate $(x-\bar{x})^{2}$ - ${ }^{3}$ process: substitute into formula - ${ }^{4}$ process: calculate standard deviation	- 116 - ${ }^{2} \quad 324,196,121,324,144,225$ -3 $\sqrt{\frac{1334}{5}}$ - $\quad \mathrm{s}=16 \cdot 33$ (disregard rounding) 4 marks
NOTES: 1. 2.	For use of alternative formula in part (a) (ii), award - process: calculate $\sum x$ and $\sum x^{2}$ -3 process: substitute into formula 4 process: calculate standard deviation For a correct answer without working in part (a) (ii)	marks as follows -2 $\quad 696$ and 82070 - $\sqrt{\frac{82070-\frac{696^{2}}{6}}{5}}$ - $\quad 16.33$ award $0 / 3$
(b)	Ans: 1 and 4 (The total score is the same in both matches and in the first match the scores are more spread out.) - ${ }^{1}$ interpret: select one correct statement - ${ }^{2}$ interpret: select second correct statement	- ${ }^{1} \quad 1$ - 24 2 marks
NOTES:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
(c)	Ans: Yes. The group has been overcharged by $£ 10$. - strategy: know to solve system of equations - ${ }^{2}$ process: follow a valid strategy through to provide a value for x and y - ${ }^{3} \quad$ process: correct value for x and y - ${ }^{4}$ communication: conclusion with evidence	- ${ }^{1}$ evidence of scaling - ${ }^{2} \quad$ a value for x and y -3 $x=425, y=299$ - ${ }^{4}$ (Yes), the third group has been charged $£ 10$ too much
NOTES:		
1. In	Incorrect equations in parts (a) and (b) must be followed through to give the possibility of awarding 4/4	
2. A	Any valid strategy must involve the use of two equations	
3. M	Minimum evidence for fourth mark is $£ 2046$ followed by "Yes"	

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
7.	Ans: $\frac{a^{2}+b^{2}}{a b}$ - ${ }^{1}$ process: state common denominator \bullet^{2} process: state answer as single fraction with no subsequent errors	- ${ }^{1} \quad a b$ $\bullet^{2} \frac{a^{2}+b^{2}}{a b}$ 2 marks
NOTES:		
8.	Ans: 36•9, 323•1 ${ }^{-1}$ process: solve equation for $\cos x^{0}$ \bullet^{2} process: find one value for x ${ }^{3}$ process: find second value for x	- $\quad \cos x^{\circ}=4 / 5$ - ${ }^{2} \quad 36.9$ - ${ }^{3} \quad 323 \cdot 1$ 3 marks
NOTES: 1. Where $\cos x^{\circ}$ is calculated incorrectly, the working must be followed through with the possibility of awarding $2 / 3$		
2. For	a correct answer without working	award 0/3

Question No	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each •
9.	Ans: $\quad D=\sqrt{\frac{I}{E}}$ - ${ }^{1}$ process: start to rearrange - ${ }^{2}$ process: continue - process: complete	- $E D^{2}=I$ - ${ }^{2} \quad D^{2}=\frac{I}{E}$ - ${ }^{3} \quad D=\sqrt{\frac{I}{E}}$
NOTES: 1. For a correct answer without working award $3 / 3$ 2. The third mark is available for taking the square root of an expression for D^{2} 3. For an answer of $D=\frac{\sqrt{I}}{E}$ with or without working award $2 / 3$		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
10.	Ans: 0.4 m - ${ }^{1}$ strategy: marshall facts and recognise right-angled triangle	
	- ${ }^{2}$ strategy: correct use of Pythagoras' Theorem	- ${ }^{2} \quad x^{2}=1 \cdot 9^{2}-1 \cdot 1^{2}$
	- process: correct calculation	- ${ }^{3} \quad x=1.55$
	- ${ }^{4}$ process: calculate depth of oil	${ }^{-4} 0.35$
		4 marks

NOTES:

1. For a correct answer without working
2. The final mark is for subtracting a calculated value from the radius
3. Where a candidate assumes an angle of 45° in the right-angled triangle, only the first and fourth marks are available
4. SOME COMMON ANSWERS (with working):

$$
\sqrt{1 \cdot 9^{2}+1 \cdot 1^{2}}=2 \cdot 2
$$

$1 \cdot 9-\sqrt{2 \cdot 2^{2}-1 \cdot 9^{2}}=0 \cdot 8$

11.	Ans: $\frac{\boldsymbol{x}^{5}}{\boldsymbol{y}^{2}}$			
\bullet^{1}	process: simplify x terms or y terms	\bullet^{1}	x^{5} or y^{-2}	
\bullet^{2}	process: correctly simplify and express with positive indices.	\bullet^{2}	$\frac{x^{5}}{y^{2}}$	$\mathbf{2 ~ m a r k s ~}$

NOTES:

$\begin{gathered} \hline \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each -
12.	Ans: $\quad \mathbf{7 5} \mathbf{3}$ metres - ${ }^{1}$ strategy: know to apply sine rule to find CP or other valid strategy - ${ }^{2}$ process: correct application of sine rule or other valid strategy - ${ }^{3}$ process: calculate CP or YP -4 strategy: know to apply trigonometry to find height of cliff - 5 process: calculate height	- ${ }^{1}$ evidence - $2 \frac{\mathrm{CP}}{\sin 27^{\circ}}=\frac{89}{\sin 25^{\circ}} \quad$ or $\frac{\mathrm{YP}}{\sin 128^{\circ}}=\frac{89}{\sin 25^{\circ}}$ - ${ }^{3} \quad \mathrm{CP}=95.6$ or $\mathrm{YP}=165.9$ - $\quad \sin 52^{\circ}=\frac{h}{95 \cdot 6}$ or $\sin 27^{\circ}=\frac{h}{165 \cdot 9}$ -5 $h=75 \cdot 3$ (metres)
NOTES: 1. 2. 3. 4. 5.	Disregard any errors due to premature rounding p Variations in CP (or YP) or a wrong value for CP alculating the height Where a candidate assumes that C is the midpoint correct trig calculation Where an incorrect trig ratio is used to find the he or a correct answer without working	ided there is evidence YP) must be accepted as a basis for YF, the last two marks are available for ht, the fifth mark is still available award 0/5

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
13.	Ans: No, $0.522>0.5$ - ${ }^{1}$ strategy: know how to decrease by 15\%	$\bullet 10 \cdot 85$
	- ${ }^{2}$ strategy: know how to find reduction -3 process: carry out all calculations correctly	$\bullet^{2} \quad 0 \cdot 85^{4}$ - ${ }^{3} 0.52200625$
	- communication: state conclusion with reason	- No, $0.522>0.5 \sim 4$ marks

NOTES:

1. For an answer of No, $0.522>0 \cdot 5$, with or without working,
award $4 / 4$
2. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding $3 / 4$
3. For a correct calculation of any number $\times 0 \cdot 85^{4}$, the first 3 marks should be awarded
4. The reason must refer to the candidate's answer and 50%, or the difference between them
5. Where a candidate calculates $4 \times 15 \%=60 \%$, for an answer of "yes, 60% is greater than 50% "
"yes, it is reduced by 60% " award $0 / 4$

14.	Ans: 1 - ${ }^{1}$ strategy: start to simplify	- $\frac{\cos x^{\circ} \frac{\sin x^{\circ}}{\cos x^{\circ}}}{\sin x^{\circ}}$ or $\frac{\sin x^{\circ}}{\sin x^{\circ}}$ or $\frac{\cos x^{\circ} \tan x^{\circ}}{\cos x^{\circ} \tan x^{\circ}}$	
	${ }^{2}$ process: simplify fully		2 marks

NOTES:

1. For a correct answer without working
award $0 / 2$
