2012 Mathematics

Intermediate 1 Units 1, 2 \& Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader. You can ask for support within Scoris Assessor by using the messaging system or by raising an exception.
Instructions on how to use the message system and raise an exception are on SQA Academy : e-marking 2012 training course: Section 4 - A guide to e-marking for markers: Scoris Assessor online marking training: Section 7 - Communications.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0 \cdot 5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and x are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$, indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Two: Mathematics Intermediate 1: Paper 2, Units 1, 2 and Applications

Question		Expected Answer/s	Max Mark	Additional Guidance
1		Ans: 10.35 am - ${ }^{1}$ subtract 3 h 40 m from 2.15: 10.35	1	1. Accept 10.35, but do not accept 10.35pm
2		Ans: 1575 grams - ${ }^{1}$ find number of grams per portion: $700 \div 4=175$ -2 find number of grams for 9 portions: $175 \times 9=1575$	2	1. Correct answer without working award $2 / 2$ 2. Alternative strategies (a) ${ }^{1} \quad 9 \div 4=2 \cdot 25$ - $2700 \times 2 \cdot 25=1575$ (b) ${ }^{1} \quad 9 \div(4 \div 700)$ $\bullet^{2} \quad 1575$ [$4 \div 700$ is not enough for the $1^{\text {st }}$ mark] (c)$\bullet^{1} \bullet^{2}$ 4 700 4 700 175 1575 [In this case award $1 / 2$ for correct method with one error] 3. For $700 \times 9=6300$ award $0 / 2$
3	a	Ans: 8 - ${ }^{1}$ find number of arcs: 8	1	
3	b	Ans: 8.5 hours - ${ }^{1}$ find shortest journey time: $8 \cdot 5$	1	1. Disregard missing or incorrect units 2. Accept $8 \mathrm{~h} 30 \mathrm{~m}, 8 \cdot 3(0)$

Question		Expected Answer/s	Max Mark	Additional Guidance
6	a	Ans: 147 cm - ${ }^{1}$ interpret stem and leaf diagram: 147	1	1. For $14 \mid 7$ award $0 / 1$
6	b	Ans: 131 cm - 1 find median: 131	1	1. For $13 \mid 1$ award $0 / 1$
6	c	Ans: eg girls are taller or boys are shorter - ${ }^{1}$ make valid comparison: any indication that girls are taller	1	1. Answer must imply comparison of girls with boys. (a) Examples of acceptable answers (i) There are more taller girls than boys. (ii) There are more boys with short heights than girls. (b) Examples of unacceptable answers (i)More boys are in the 110's and 120 's. More girls in the 130's and 140's. (ii) There are more smaller boys than taller. There are more taller girls than smaller. 2. Disregard subsequent statements unless they clearly contradict a correct comparison.

Question		Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
7	a	Ans: 56 - ${ }^{1}$ evaluate formula: 56	1	
7	b	Ans: $\quad 10 \times \mathbf{B 6 + 7} \times \mathbf{C} 6$ or equivalent - state formula: $10 \times \mathrm{B} 6+7 \times \mathrm{C} 6$	1	
8	a	Ans: 12.0 - ${ }^{1}$ arrange numbers in order: $\begin{array}{lllll}10.8 & 11.0 & 11.2 & 11.5 & 11.6\end{array}$ $\begin{array}{llll}11 \cdot 8 & 11 \cdot 9 & 12 \cdot 1 & 12 \cdot 3\end{array}$ - ${ }^{2}$ find upper quartile: $12(\cdot 0)$	2	1. Correct answer without working award $2 / 2$ 2. If 'correct' upper quartile is found from ordered list with one missing or one extra number award $1 / 2 \times \checkmark$ 3. If numbers not ordered then for upper quartile $=11.7 \quad$ award $1 / 2 \times \checkmark$ 4. Accept ordered list written in part (b)
8	b	Ans: 0.9 - ${ }^{1}$ find lower quartile: $11 \cdot 1$ - ${ }^{2}$ find interquartile range: $12 \cdot 0-11 \cdot 1=0 \cdot 9$	2	1. Correct answer without working award $2 / 2$ 2. If numbers not ordered then award $2 / 2$ for $11 \cdot 7-10 \cdot 9=0 \cdot 8$ award $2 / 2$ 3. Accept lower quartile clearly identified in part (a)

	Expected Answer/s	Max Mark	Additional Guidance
10	Ans: - ${ }^{1}$ use suitable scales on axes: - ${ }^{2}$ two points plotted correctly: -3 another two points plotted correctly: - ${ }^{4}$ final two points plotted and line graph completed correctly:	4	1. If a bar graph is drawn, then a maximum of 3 marks is available - ${ }^{1}$ use suitable scales on axes - ${ }^{2}$ two bars correct height - ${ }^{3}$ all bars correct height and bar graph completed correctly (each bar same width and equally spaced; accept no space between bars) 2. The $4^{\text {th }}$ mark is not available if the line extends beyond (April, 2000) and/or (September, 5400) by more than two boxes each
11	Ans: £294 - ${ }^{1}$ calculate gross premium: $105000 / 1000 \times 3 \cdot 20=336$ - ${ }^{2}$ calculate discount: $1 / 8 \times 336=42$ - ${ }^{3}$ calculate net premium: $336-42=294$	3	1. Correct answer without working award 3/3 2. Common answers (no working necessary) (a) $42000\left[\frac{1}{8}\right.$ of $\left.(105000 \times 3 \cdot 20)\right]$ award $1 / 3 \times \checkmark x$ (b) 294000 [336000-42000] award $2 / 3 \times \checkmark \checkmark$ 3. Alternative Strategy - ${ }^{1} /{ }_{8} \times 3 \cdot 20=0 \cdot 4(0)$ - ${ }^{2} 3 \cdot 20-0 \cdot 4(0)=2 \cdot 8(0)$ - ${ }^{3} 105000 /_{1000} \times 2 \cdot 80=294$ 4. Do not award the $3^{\text {rd }}$ mark if there is invalid subsequent working e.g. $105000-294=104706$ award $2 / 3 \quad \checkmark \checkmark x$

Qu	Expected Answer/s	Max Mark	Additional Guidance
13	Ans: 942 cm 3 - ${ }^{1}$ know how to find curved surface area: $2 \pi \mathrm{rh}$ or $\pi \mathrm{dh}$ - ${ }^{2}$ substitute correct radius (or diameter) and height into formula involving π : $2 \times \pi \times 10 \times 15$ or $\pi \times 20 \times 15$ -3 carry out calculations correctly (must involve π): 942 (•47...)	3	1. Correct answer without working award $3 / 3$

Question		Expected Answer/s	Max Mark	Additional Guidance
15	a	Ans: £28 - ${ }^{1}$ calculate profit: $12 \times 9-80=28$	1	
15	b	Ans: 35\% - ${ }^{1}$ know to express profit as a fraction of 80 : ${ }^{28} / 80$ - ${ }^{2} \quad$ know to multiply fraction by 100 : $28 / 80 \times 100$ - ${ }^{3}$ carry out all calculations correctly: 35	3	1. Correct answer without working award $3 / 3$ 2. $3^{\text {rd }}$ mark is only available for calculations of the form $\mathrm{a} / \mathrm{b} \times \mathrm{c}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}=$ answer to (a) or 80 or 100 or 108 . 3. Some common answers (working must be shown) (a) $286,285(\cdot 7 \ldots)\left[{ }^{80} / 28 \times 100\right]$ award $2 / 3 \times \checkmark \checkmark$ (b) $22(\cdot 4)\left[{ }^{28} / 100 \times 80\right.$ or $80 / 100 \times 28] \quad$ award $1 / 3 \times \times \checkmark$

TOTAL MARKS FOR PAPER 2
 50

TOTAL MARKS FOR PAPER $1 \& 2$

