

2012 Mathematics

Intermediate 1 Units 1, 2 & Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 & Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader. You can ask for support within Scoris Assessor by using the messaging system or by raising an exception.

Instructions on how to use the message system and raise an exception are on SQA Academy : e-marking 2012 training course: Section 4 - A guide to e-marking for markers: Scoris Assessor online marking training: Section 7 - Communications.

- 2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
- 3. Award one mark for each 'bullet' point shown in the Marking Instructions.
- 4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
- 5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
- 6. The following should not be penalised:
 - working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
 - omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
 - bad form, eg sin $x^\circ = 0.5 = 30^\circ$
 - legitimate variation in numerical values/algebraic expressions
- 7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
- 8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
- **9.** Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.

- **10.** Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
- **11.** Do not penalise the same error twice in the same question.
- 12. Do not penalise a transcription error unless the question has been simplified as a result.
- **13.** Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
- 14. Where more than one solution is given, mark them all and award the least mark.
- **15.** The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2/4 \checkmark \times \times \checkmark$ ' indicates that the 1st & 4th marks should be awarded but the 2nd & 3rd marks should not.

Que	estion	Expected Answer/s	Max Mark	Additional Guidance
1		Ans: 10.35 am • ¹ subtract 3h40m from 2.15: 10.35	1	1. Accept 10.35, but do not accept 10.35pm
2		 Ans: 1575 grams ¹ find number of grams per portion: 700 ÷ 4 = 175 ² find number of grams for 9 portions: 175 × 9 = 1575 	2	1. Correct answer without working award 2/2 2. Alternative strategies (a) $\bullet^1 9 \div 4 = 2 \cdot 25$ $\bullet^2 700 \times 2 \cdot 25 = 1575$ (b) $\bullet^1 9 \div (4 \div 700)$ $\bullet^2 1575$ $[4 \div 700 \text{ is not enough for the 1st mark}]$ (c) $\bullet^{1} \bullet^2 4 700$ $\frac{1 175}{9 1575}$ [In this case award 1/2 for correct method with one error] 3. For $700 \times 9 = 6300$ award 0/2
3	a	 Ans: 8 •¹ find number of arcs: 8 	1	
3	b	 Ans: 8·5 hours •¹ find shortest journey time: 8·5 	1	 Disregard missing or incorrect units Accept 8h30m, 8·3(0)

Qu	estion	Expected Answer/s	Max Mark	Additional Guidance	
4	a	Ans: £5661 • ¹ find monthly payment: $31.45 \times 5 = 157.25$ • ² find total payments: $157.25 \times 36 = 5661$	2	 Correct answer without working award 2/2 Common answer (no working necessary) 1132.2(0) [31.45×3×12] award 1/2 	
4	b	Ans: £661 • ¹ find cost of loan: 5661 - 5000 = 661	1	 Where candidate gives answer to part (a) in part (b) 4a 4b award 157.25 5661 (a)2/2 (b)1/1 → 661 157.25 5661 (a)2/2 (b)0/1 157.25 5661 (a)2/2 (b)0/1 157.25 4842.75 (a) 1/2 (b)1/1 157.25 4842.75 (a) 1/2 (b)0/1 Where candidate's answer to (a) is 1132.2(0) then in (b) award 1/1 for 132.2(0) [1132.2 - 1000] 	

2
nissing totals a arks is available rwise "correct" rwise "correct" misinterprets ximum ect" for total ≤ 60
arl rw rw m m

Qu	estior	Expected Answer/s	Max Mark	Additional Guidance
6	а	 Ans: 147 cm ¹ interpret stem and leaf diagram: 147 	1	1. For 14 7 award 0/1
6	b	Ans: 131 cm • ¹ find median: 131	1	1. For 13 1 award 0/1
6	с	 Ans: eg girls are taller or boys are shorter ¹ make valid comparison: any indication that girls are taller 	1	 Answer must imply comparison of girls with boys. (a) Examples of acceptable answers There are more taller girls than boys. There are more boys with short heights than girls. (b) Examples of unacceptable answers More boys are in the 110's and 120's. More girls in the 130's and 140's. There are more smaller boys than taller. There are more taller girls than smaller. Disregard subsequent statements unless they clearly contradict a correct comparison.

Qu	estion	Expected Answer/s	Max Mark	Additional Guidance
7	a	Ans: 56 \bullet^1 evaluate formula: 56	1	
7	b	Ans: $10 \times B6 + 7 \times C6$ or equivalent • ¹ state formula: $10 \times B6 + 7 \times C6$	1	
8	a	 Ans: 12.0 ¹ arrange numbers in order: 10.8 11.0 11.2 11.5 11.6 11.8 11.9 12.1 12.3 ² find upper quartile: 12(.0) 	2	 Correct answer without working award 2/2 If 'correct' upper quartile is found from ordered list with one missing or one extra number award 1/2 ×√ If numbers not ordered then for upper quartile = 11.7 award 1/2 ×√ Accept ordered list written in part (b)
8	b	Ans: 0.9 • ¹ find lower quartile: 11.1 • ² find interquartile range: 12.0 - 11.1 = 0.9	2	 Correct answer without working award 2/2 If numbers not ordered then award 2/2 for 11·7–10·9 = 0·8 award 2/2 Accept lower quartile clearly identified in part (a)

Questi	ion	Expected Answer/s	Max Mark	Additional Guidance
9		Ans: 24.8 m/s	3	
		• ¹ know how to find speed: $S = {}^{D}/_{T}$		1. Correct answer without working award 3/3
		• ² express D or T in correct units:		
		D = 3100(m) or $T = 125(s)$		2. Some common answers (no working necessary, rounding or
		• ³ express D and T in correct units		truncation is acceptable)
		and calculate speed in m/s: $3100 \div 125 = 24.8$		(a) $3100 \div 2.05 = 1512(.1)$ award 2/3 $\checkmark \checkmark \times$
		$5100 \div 125 - 24.6$		(b) $3 \cdot 1 \div 125 = 0.02(48)$ award $2/3 \checkmark \checkmark \times$
				(c) $3 \cdot 1 \div 2 \cdot 05 = 1 \cdot 5(1 \dots)$
				$\frac{1}{3}\sqrt{2} = \frac{1}{3} = $
				(d) $3 \cdot 1 \div 2 \cdot 5 = 1 \cdot 24$
				award $1/3 \checkmark \times \times$
				(e) $3100 \times 125 = 387500$
				award 2/3 ×√√
				(f) $3100 \times 2.05 = 6355$ award $1/3 \times \sqrt{\times}$
				(g) $3.1 \times 125 = 387(.5), 388$
				award $1/3 \times \sqrt{\times}$
				(h) $3 \cdot 1 \times 2 \cdot 05 = 6 \cdot 3(55), 6 \cdot 4$
				award 0/3
				3. Special case (working must be shown) (km/m(in) must be shown)
				$3 \cdot 1 \div 2 \cdot 08() = 1 \cdot 49$ km/m or $1 \cdot 5$ km/m award $2/3$
				award 2/3

Question	Expected Answer/s	Max Mark	Additional Guidance
10	 Ans: •¹ use suitable scales on axes: •² two points plotted correctly: •³ another two points plotted correctly: •⁴ final two points plotted and line graph completed correctly: 	4	 If a bar graph is drawn, then a maximum of 3 marks is available ¹ use suitable scales on axes ² two bars correct height ³ all bars correct height and bar graph completed correctly (each bar same width and equally spaced; accept no space between bars) The 4th mark is not available if the line extends beyond (April, 2000) and/or (September, 5400) by more than two boxes each
11	Ans: £294 • $1 \text{calculate gross premium:} \\ 105 000/_{1 000} \times 3 \cdot 20 = 336$ • $2 \text{calculate discount:} \\ 1/_8 \times 336 = 42$ • $3 \text{calculate net premium:} \\ 336 - 42 = 294$	3	 Correct answer without working award 3/3 Common answers (no working necessary) (a) 42000 [¹/₈ of (105000 × 3·20)] award 1/3 ×√x (b) 294000 [336000 - 42000] award 2/3 ×√√ Alternative Strategy ¹/₈ × 3·20 = 0·4(0) ² 3·20 - 0·4(0) = 2·8(0) ³ ^{105 000}/_{1 000} × 2·80 = 294 Do not award the 3rd mark if there is invalid subsequent working e.g. 105000-294 = 104706 award 2/3 √√ ×

Question	Expected Answer/s	Max Mark	Additional Guidance
12	Ans: £216·95	4	 Correct answer without working award 4/4 (a) The 4th mark is only available where the answer has to be rounded to the nearest penny. (b) The 4th mark should not be awarded where premature rounding results in an incorrect answer.
	$\underbrace{\text{METHOD 1}}_{\bullet^{1}}$ • ¹ calculate tax in dollars: $\frac{17}{100} \times 280 = 47 \cdot 6(0)$ • ² calculate total cost in dollars: $280 + 47 \cdot 6(0) = 327 \cdot 6(0)$ • ³ convert cost to sterling: $327 \cdot 6(0) \div 1 \cdot 51 = 216 \cdot (95)$ • ⁴ round to nearest penny: $216 \cdot 95$		 METHOD 1 1. Acceptable answers for partial credit (no working necessary) (i) 494.68 [327.6 × 1.51] award 3/4 √√×√ (ii) 494.676 [327.6 × 1.51] award 2/4 √√××
	$\underline{\text{METHOD 2}}$ • 1 convert cost to sterling: $280 \div 1.51 = 185(.43)$ • 2 calculate tax in sterling: $1^{17}/_{100} \times 185.43(0) = 31(.52)$ • 3 calculate total cost in sterling: 216(.95) • 4 round to nearest penny: 216.95		METHOD 2 1. Acceptable answers for partial credit (no working necessary) (a)(i) 185·43 award $2/4 \checkmark \times \times \checkmark$ (ii) 185(·4) award $1/4 \checkmark \times \times \times$ (b)(i) 31·52 award $3/4 \checkmark \checkmark \times \checkmark$ (ii) 31(·5) award $2/4 \checkmark \checkmark \times \checkmark$ 2. Answers obtained from 280×1.51 (no working necessary) (a) 422·8(0) award $0/4$ (b)(i) 71·88 award $2/4 \times \checkmark \times \checkmark$ (ii) 71·876 award $1/4 \times \checkmark \times \times$ (c)(i) 494·68 award $3/4 \times \checkmark \checkmark \checkmark$ 3. Special cases (combination of methods 1 and 2) (a) 185·43 + 47·6(0) = 233·03 award $2/4$ (b) 47·6(0) + 422·8(0) = 470·4(0) award $1/4$

Quest	tion	Expected Answer/s	Max Mark	Additional Guidance
13		Ans: 942 cm ³	3	
		• ¹ know how to find curved surface area: 2π rh or π dh		1. Correct answer without working award 3/3
		• ² substitute correct radius (or diameter) and height into formula involving π : $2 \times \pi \times 10 \times 15$ or $\pi \times 20 \times 15$		
		• ³ carry out calculations correctly (must involve π): 942 (·47)		

Question	Expected Answer/s	Max Mark	Additional Guidance
14	Ans: 10.7 m	4	
	• ¹ correct form of Pythagoras' Theorem: $6 \cdot 8^2 - 6^2$		1. Correct answer without working award 4/4
	• ² calculate difference (or sum) of two squares: 10.24		2. Accept e.g. $x^2 + 6^2 = 6 \cdot 8^2$ as evidence for award of 1 st mark
	 ³ calculate the square root of a calculated value: 3.2 ⁴ correctly add 7.5 to previously calculated height of triangle (see additional guidance 3-5): 3.2 + 7.5 = 10.7 		 3. Some common answers (working must be shown) (a) √(6⋅8² + 6²) + 7⋅5) = 16⋅6, 16⋅5(6) award 3/4 ×√√√ (b) √(6⋅8² + 6²) = 9⋅1, 9⋅0(6) award 2/4 ×√√× 4. The 4th mark may be awarded for
			e.g. (a) $\frac{1}{2} \times 12 \times 6 \cdot 8 + 7 \cdot 5 = 48 \cdot 3$ award $\frac{1}{4} \times \times \sqrt{4}$ (b) $\frac{1}{2} \times (12 + 6 \cdot 8) + 7 \cdot 5 = 16 \cdot 9$ award $\frac{1}{4} \times \times \sqrt{4}$
			5. Do not award the 4 th mark for $12 + 6 \cdot 8 + 7 \cdot 5 = 26 \cdot 3$ award 0/4
			 6. Do not award the 4th mark if there is invalid subsequent working after finding the height of the triangle or after finding the height of the house e.g. (a) ¹/₂(3·2) + 7·5 = 9·1 award 3/4 √√√× (b) √(6·8² + 6²) + 7·5 + 6·8 = 23·4 award 2/4 ×√√×
			7. Example of alternative strategy involving trigonometry • ¹ $a^\circ = \cos^{-1}({}^{6}/_{6\cdot 8}) = 28 \cdot 07^\circ \dots$ • ² $\tan 28 \cdot 07^\circ \dots = {}^{x}/_{6}$ • ³ $x = 6\tan 28 \cdot 07^\circ = 3 \cdot 2$ • ⁴ height = $3 \cdot 2 + 7 \cdot 5 = 10 \cdot 7$
			8. Do not penalise inadvertent use of radians or grads if trigonometry is used

Que	estior	Expected Answer/s	Max Mark	Additional Guidance
15	a	Ans: £28 • 1 calculate profit: $12 \times 9 - 80 = 28$	1	
15	b	 Ans: 35% •¹ know to express profit as a fraction of 80: ²⁸/₈₀ •² know to multiply fraction by 100: ²⁸/₈₀ × 100 •³ carry out all calculations correctly: 35 	3	 Correct answer without working award 3/3 3rd mark is only available for calculations of the form ^a/_b × c where a,b,c = answer to (a) or 80 or 100 or 108. Some common answers (working must be shown) (a) 286, 285(·7) [⁸⁰/₂₈ × 100] award 2/3 × √ √ (b) 22(·4) [²⁸/₁₀₀ × 80 or ⁸⁰/₁₀₀ × 28] award 1/3 ××√

16Ans: 1123 cm²5••know how to calculate area of semi-circle: $\frac{1}{2}\pi^2$ 1. Correct answer without working award 0/5•?substitute correct radius into formula: $\frac{1}{2} \times \pi \times 6^2$ 1. Correct answer without working award 0/5•?substitute correct radius into formula: $\frac{1}{2} \times \pi \times 6^2$ 2. Some common answers (working must be shown) (a) 1405 [$\pi \times 6^2 \times 5 + 60 \times 14$] award $\frac{4}{5} \times \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$

TOTAL MARKS FOR PAPER 2 50

TOTAL MARKS FOR PAPER 1 & 2 80

[END OF MARKING INSTRUCTIONS]