2011 Mathematics

Intermediate 1 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 1 Units $1,2 \& 3$ Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from the Principal Assessor. You can do this by posting a question on the Marking Team forum. Alternatively, you can refer the issue directly to the Principal Assessor by completing a Principal Assessor Referral form and returning it with the script in the normal way.
2. Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been not simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been not simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin \mathrm{x}^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced then provided the solution is legible marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and \times are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$ ', indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

	Expected Answer/s	Max Mark	Additional Guidance
1	Ans: 50 minutes - ${ }^{1}$ find number of calories per minute: $160 \div 20=8$ - ${ }^{2}$ find time: $400 \div 8=50$	2	1. Correct answer without working award 2/2 2. Alternative strategies (a) - ${ }^{1} \quad 20 \div 160=0 \cdot 125$ - ${ }^{2} \quad 0 \cdot 125 \times 400=50$ (b) - ${ }^{1} \quad 400 \div 160=2.5$ -2 $2.5 \times 20=50$ (c) $\bullet^{1} \bullet^{2}$ eg $160 \quad 20$ 16020 $\underline{80 \quad 10}$ $400 \underline{50}$ [In this case award $1 / 2$ for correct strategy with one error.]
2	Ans: $c<6$ - collect constants: 7c <42 - ${ }^{2}$ solve inequality for $\mathrm{m}: \mathrm{c}<6$	2	1. For answers without valid working award $1 / 2$ eg (a) $\mathrm{c}<6$ without working $\times \checkmark$ (b) $7 \times 6+13<55 \rightarrow c<6 \times \checkmark$ (c) $7 \mathrm{c}=42 \rightarrow \mathrm{c}<6 \times \mathrm{V}$ 2. Answers acceptable for partial credit (valid working must be shown) award $1 / 2$ (a) 7c $<42 \rightarrow<6 \checkmark x$ (b) $7 \mathrm{c}<42 \rightarrow \mathrm{c}=6 \vee \mathrm{x}$ (c) $7 \mathrm{c}=42 \rightarrow \mathrm{c}=6 \checkmark \mathrm{x}$ (d) $7 \mathrm{c}<68 \rightarrow \mathrm{c}<9.7(\ldots) \times \checkmark$

	Expected Answer/s	Max Mark	Additional Guidance
3	Ans: $£ 3.8 \times 10^{6}$ - ${ }^{1}$ find total value : $950 \times 4000=3800000$ - ${ }^{2}$ express answer in standard form: $3.8 \times 10^{\mathrm{n}}$ - ${ }^{3}$ consistent power of ten: 3.8×10^{6}	3	1. Correct answer without working award $3 / 3$ 2. Some common answers (no working necessary) (a) 38×10^{5} award $2 / 3 \checkmark \times \checkmark$ (b) 3.810^{6} award $2 / 3 \checkmark \checkmark x$ (c) $3 \times 10^{6}, 4 \times 10^{6}$ award $2 / 3 \times \checkmark \checkmark$ (d) $9.5 \times 10^{2}, 4 \times 10^{3}$ award $1 / 3$

	sti	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
5	a	Ans: $9 m+35$ - ${ }^{1}$ multiply out bracket: $10 m+35$ - ${ }^{2}$ collect like terms: $9 m+35$	2	1. Correct answer without working award $2 / 2$ 2. $2^{\text {nd }}$ mark is not available if there is invalid subsequent working eg $9 \mathrm{~m}+35 \rightarrow 44 \mathrm{~m} \quad$ award $1 / 2$ $9 \mathrm{~m}+35 \rightarrow 35 / 9 \quad$ award $1 / 2$ 3. $10 m+35-5 m=5 m+35 \times \checkmark$ award $1 / 2$
5	b	Ans: 6(4-3k) - identify highest common factor: 6 or $4-3 k$ - ${ }^{2}$ factorise: $6(4-3 \mathrm{k})$	2	1. $2(12-9 \mathrm{k}), 3(8-6 \mathrm{k})$ award $1 / 2 \times \checkmark$
6		Ans: 18 minutes -1 know how to find volume of tank: $90 \times 60 \times 50$ - ${ }^{2}$ know how to find volume in litres: $(90 \times 60 \times 50) \div 1000$ - ${ }^{3}$ know how to find time: $[(90 \times 60 \times 50) \div 1000] \div 15$ - ${ }^{4}$ calculate $[(\text { volume }) \div 1000] \div 15=18$	4	1. Correct answer with no working award 4/4 2. Some common answers (working must be shown) (a) $270000 \div 15 \div 60=300$ $\checkmark \times \checkmark \times$ award $2 / 4$ (b) $270000 \div 1000 \div 60=4.5$ $\checkmark \checkmark \times x$ award $2 / 4$ (c) $[(90+60+50) \div 1000] \div 15=0.013$ $x \checkmark \checkmark \checkmark$ award 3/4

Qu	stion	Expected Answer/s	Max Mark	Additional Guidance
7	a	Ans: 3698 - ${ }^{1}$ find 'Liberal' angle: 43 - ${ }^{2}$ know how to find number of Liberal votes: $43 / 360 \times 30960$ or ${ }^{30960} / 360 \times 43$ or $43 \div(360 \div 30960)$ - ${ }^{3}$ find number of Liberal votes: 3698	3	1. Correct answer without working award 3/3 2. $27262\left[{ }^{317} / 360 \times 30960\right]$ award $2 / 3 \times \checkmark \checkmark$ (no working necessary) 3. A common answer (working must be shown) 43% of $30960=13312(\cdot 8), 13313$ award $1 / 3 \checkmark x x$ 4. Do not award third mark where premature rounding results in wrong answer eg ${ }^{43} / 360 \times 30960=0.12 \times 30960=3715(\cdot 2)$ award $2 / 3 \checkmark \checkmark x$
7	b	Ans: In the by-election more voted SNP fewer voted Labour more voted Liberal - ${ }^{1} \quad$ state any one of the above differences - ${ }^{2}$ state another one of the above differences	2	1. Disregard invalid statements. eg SNP increased \checkmark Labour decreased \checkmark Liberal decreased \times award $2 / 2$ 2. Disregard incorrect numerical references. eg SNP gained 70° Labour lost 90° award $2 / 2$ 3. Some common answers (a) Labour lost votes to SNP award 2/2 (b) In 2005 Labour had much more than SNP, but in 2008 they were close to each other. award 1/2

	Expected Answer/s	Max Mark	Additional Guidance
8	Ans: $£ 994.39$ or $£ 994.40$ - ${ }^{1}$ calculate 800×1.33 correctly: 1064 -2 know to calculate $1064 \div 1.07$ - ${ }^{3}$ divide correctly and round to nearest (appropriate) penny: 994.39 or 994.40	3	1. Correct answer without working award $3 / 3$ 2. The third mark is only available where the answer to the division has to be rounded or truncated to the nearest penny 3. For $£ 994.4 \quad \checkmark \checkmark x \quad$ award $2 / 3$ 4. Some common answers. (no working necessary) (a) 1064 leading to 747.66 award $1 / 3$ (b) $747.66(800 \div 1.07) \quad$ award $1 / 3$ (c) $601.50(800 \div 1.33) \quad$ award $1 / 3$ (d) $(1064-856) \div 1.07=194.39$ award $2 / 3$ (e) $(800 \div 1.33) \times 1.07=643.61$ or 643.60 award 2/3 5. A common answer. (working must be shown) $994.39-800=194.39 \quad$ award $3 / 3$
9	Ans: 7.5 m - ${ }^{1}$ correct form of Pythagoras Theorem: $4 \cdot 5^{2}+2 \cdot 4^{2}$ - ${ }^{2}$ calculate sum (or difference) of squares: 26.01 - ${ }^{3}$ calculate the square root of a calculated value: $5 \cdot 1$ - ${ }^{4}$ calculate height: $5 \cdot 1+2 \cdot 4=7 \cdot 5$	4	1. Correct answer without working award 4/4 2. Some common answers (working must be shown) (a) $6 \cdot 2(\ldots$. $\left.\left[\sqrt{ }\left(4 \cdot 5^{2}-2 \cdot 4^{2}\right)+2 \cdot 4\right)\right]$ $x \checkmark \checkmark \checkmark$ award 3/4 (b) $3 \cdot 8(\ldots$) $\left[\sqrt{ }\left(4 \cdot 5^{2}-2 \cdot 4^{2}\right)\right]$ $x \checkmark \checkmark x$ award 2/4 3. Example of alternative strategy involving trigonometry - $\mathrm{a}^{\circ}=\tan ^{-1}\left({ }^{2.4} / 4.5\right)=28.07^{\circ} \ldots \ldots$ - ${ }^{2} \cos 28.07^{\circ} \ldots \ldots=4.5 / \mathrm{x}$ - ${ }^{3} x={ }^{4.5} / \mathrm{co28.07} \ldots \ldots=5 \cdot 1$ - ${ }^{4}$ height $=5 \cdot 1+2 \cdot 4=7 \cdot 5$ 4. Do not penalise inadvertent use of radians or grads if trigonometry is used 5. Mark 4 can be awarded for adding 2.4 on to a previously calculated value

Qu	Expected Answer/s	Max Mark	Additional Guidance
10	Ans: $\mathfrak{£ 3 5}$ know how to calculate interest: $\begin{aligned} & 7.5 / 100 \times 1400 \times 4 / 12 \\ & (\text { award } 1 \text { for } 7.5 / 100 \times 1400 \\ & \text { or } 4 / 12 \times 7.5 / 100 \\ & \text { or } 4 / 12 \times 1400) \end{aligned}$ -3 carry out percentage and fraction calculations correctly: 35	3	1. Correct answer without working award 3/3 2. If answer is 1435 [$1400+35]$ (no working necessary) (a) award $3 / 3$ if candidate states that interest is 35 (b) award $2 / 3$ if candidate does not state that interest is 35 3. Acceptable answers for partial credit (no working necessary) (a) $105[7.5 \%$ of 1400$]$ award $1 / 3$ (b) $2.5[4 / 12 \times 7.5] \quad$ award $1 / 3$ (c) $466 \cdot 67$ or $466 \cdot 66[4 / 12 \times 1400]$ (d) $420[105 \times 4]$ 4. The following common wrong answers illustrate where the $3^{\text {rd }}$ mark is available to candidates, working must be shown. (a) $1400 \times{ }^{100} / 7.5 \times{ }^{4} / 12=6222.22 \times \checkmark \checkmark$ (note: answer must be rounded or truncated to nearest penny) (b) $1400 \div 7.5 \times \frac{4}{12}=62.22 \quad \times \checkmark x$ (c) $1400 \times 7.5 / 100 \times{ }^{12} / 4=315 \quad \checkmark \times \checkmark$ (d) $1400 \times 0.75 \times 12 / 4=3150$

Qu	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Additional Guidance
14	Ans: $\mathbf{5 . 2} \mathrm{cm}^{2}$ - ${ }^{1}$ know to calculate area of semicircle: $1 / 2 \pi r^{2}$ - ${ }^{2}$ substitute correct radius into formula: $1 / 2 \times \pi \times 1.4^{2}$ - ${ }^{3}$ know to add area of triangle to area of semi-circle: $1 / 2 \times \pi \times 1 \cdot 4^{2}+1 / 2 \times 2.8 \times 1.5$ - ${ }^{4}$ carry out all calculations correctly: $3 \cdot 07 \ldots+2 \cdot 1=5 \cdot 17 \ldots$. (must include a circle calculation followed by an addition) -5 round to one decimal place: 5.2	5	1. Correct answer without working award 0/5 2. Some common answers (working must be shown) (a) $8.3\left[\pi \times 1.4^{2}+1 / 2 \times 2.8 \times 1.5\right]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ (b) $7.3\left[1 / 2 \times \pi \times 1.4^{2}+2.8 \times 1.5\right]$ award $4 / 5 \checkmark \checkmark \times \checkmark \checkmark$ (c) $14 \cdot 4\left[1 / 2 \times \pi \times 2 \cdot 8^{2}+1 / 2 \times 2 \cdot 8 \times 1 \cdot 5\right]$ $\operatorname{award} 4 / 5 \checkmark \times \checkmark \checkmark \checkmark$ (d) $6.5[1 / 2 \times \pi \times 2.8+1 / 2 \times 2.8 \times 1.5]$ award $4 / 5 \times \checkmark \checkmark \checkmark \checkmark$ (e) $4.3[1 / 2 \times \pi \times 1.4+1 / 2 \times 2.8 \times 1.5]$ award $3 / 5 \times \times \checkmark \checkmark \checkmark$ (f) $3 \cdot 1\left[1 / 2 \times \pi \times 1 \cdot 4^{2}\right]$ award $3 / 5 \checkmark \checkmark \times \times \checkmark$ (g) $6 \cdot 2\left[\pi \times 1 \cdot 4^{2}\right]$ award $2 / 5 \times \checkmark \times \times \checkmark$ (h) $4.4[1 / 2 \times \pi \times 2.8]$ award $2 / 5 \times \checkmark \times \times \checkmark$ (i) $8.8[\pi \times 2.8]$ award $2 / 5 \times \checkmark \times \times \checkmark$ (j) $2 \cdot 2[1 / 2 \times \pi \times 1 \cdot 4]$ award $1 / 5 \times \times \times \times \checkmark$ 3. (a) $5^{\text {th }}$ mark is only available where the final answer or answer to circle calculation requires rounding. (b) Where premature rounding leads to incorrect answer, a maximum of $4 / 5$ is available $\begin{aligned} \text { eg triangle } & =(1 / 2 \times 1.4 \times 1 \cdot 5) \times 2 \\ & =1 \cdot 05 \times 2 \\ & =1 \cdot 1 \times 2 \\ \text { total area } & =2 \cdot 2+3 \cdot 1=5.3 \end{aligned}$

TOTAL MARKS FOR PAPER 2

TOTAL MARKS FOR

PAPER 1 \& 2
80
[END OF MARKING INSTRUCTIONS]

