2009 Mathematics

Intermediate 1 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2009
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 1 Units 1, 2 \& 3 Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor. You can do this by posting a question on the Marking Team forum or by e-mailing/phoning the emarker Helpline. Alternatively, you can refer the issue directly to your Team Leader by checking the 'Referral' box on the marking screen.
2. Marking should always be positive, i.e. marks should be awarded for what is correct and not deducted for errors or omissions.
3. Award one mark for each 'bullet' point shown in the Marking Instructions.
4. Working subsequent to an error must be followed through with the possibility of awarding all remaining marks for the subsequent working, provided the question has not been simplified as a result of the error. In particular, the answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question has not been simplified.
5. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the marks.
6. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the Marking Instructions)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions.

7. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
8. In general only give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on page one of the question paper states that 'full credit will be given only where the solution contains appropriate working'.
9. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
10. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
11. Do not penalise the same error twice in the same question.
12. Do not penalise a transcription error unless the question has been simplified as a result.
13. Where a solution has been scored out and not replaced, then provided the solution is legible, marks should be awarded in line with the Marking Instructions for that question.
14. Where more than one solution is given, mark them all and award the least mark.
15. The symbols \checkmark and x are used in the Marking Instructions to give guidance regarding the awarding of marks for specific candidate responses to some questions, eg 'award $2 / 4 \checkmark \times \times \checkmark$ ', indicates that the $1^{\text {st }} \& 4^{\text {th }}$ marks should be awarded but the $2^{\text {nd }} \& 3^{\text {rd }}$ marks should not.

Part Two: Mathematics Intermediate 1: Paper 2, Units 1, 2 and 3

Question		Expected Answer/s	Max Mark	Additional Guidance
1		Ans: 225g - ${ }^{1}$ correct strategy: $60 \div 8 \times 30$ - ${ }^{2}$ correctly divide then multiply: 225	2	1. Correct answer without working award 2/2 2. $60 \div 8=7 \cdot 5$ (no working necessary) award $1 / 2$ 3. (a) $30 \div 8=3 \cdot 75 \rightarrow 4 \times 60=240$ (working must be shown) award $1 / 2 \times \checkmark$ (b) $4 \times 60=240$ award $0 / 2$
2		Ans: $m<39$ - ${ }^{1}$ collect constants: $2 \mathrm{~m}<78$ - ${ }^{2} \quad$ solve inequality for $\mathrm{m}: \mathrm{m}<39$	2	1. For answers without valid working award $1 / 2$ eg (i) $\mathrm{m}<39$ without working $\times \checkmark$ (ii) $2 \times 39-3<75 \rightarrow \mathrm{~m}<39 \times \checkmark$ 2. Answers acceptable for partial credit (valid working must be shown) (i) $2 \mathrm{~m}<78 \rightarrow<39$ (ii) $2 \mathrm{~m}<78 \rightarrow \mathrm{~m}=39$ or $2 \mathrm{~m}=78 \rightarrow \mathrm{~m}<39$ $2 \mathrm{~m}=78 \rightarrow \mathrm{~m}=39$ (iii) $2 \mathrm{~m}<72 \rightarrow \mathrm{~m}<36$
3	a	Ans: $\mathbf{1 0} 200000$ - \quad write 1.02×10^{7} in full : 10200000	1	1. Do not accept $1 \cdot 0200000$ -
3	b	Ans: 9450000 - ${ }^{1}$ interpret $3 / 4$ million: 750000 - ${ }^{2}$ subtract correctly: $10200000-750000=9450000$	2	1. Alternative method - 7.5×10^{5} - ${ }^{2} \quad 1.02 \times 10^{7}-7.5 \times 10^{5}=9.45 \times 10^{6}$

Question		Expected Answer/s	Max Mark	Additional Guidance
4	a	1 9 2 3789 3 234788 4 145 5 0 - ${ }^{1}$ stem correct: $1,2,3,4,5$ - ${ }^{2} \quad$ all leaves on correct level: - ${ }^{3}$ leaves ordered correctly:	3	1. Accept (a) use of commas as bad form (b) 0 and/or 6 in stem (c) stem in descending order (d) no line drawn between stem and leaves
4	b	Ans: 34 - ${ }^{1}$ find median: 34	1	1. Accept 34 irrespective of answer to (a). 2. If stem and leaf diagram in (a) is ordered but has missing or additional leaves then accept median found from this diagram.
4	c	Ans: $\frac{4}{15}$ - \quad find probability: $\frac{4}{15}$	1	1. Accept $4: 15,4$ out of 15,4 in $15,4-15$, $0 \cdot 26(\ldots), 0 \cdot 27,26 \cdot 6(\ldots) \%, 27 \%$ 2. If stem and leaf diagram has missing or additional leaves then accept probability found from this diagram.

	Question	Expected Answer/s	Max Mark	Additional Guidance
5		Ans: 8.05 am - ${ }^{1}$ know how to find journey time: $3220 \div 560$ - ${ }^{2}$ find journey time: 5 h 45 m - ${ }^{3}$ know how to find arrival time: $9 \cdot 20(\mathrm{pm})+5 \mathrm{~h} 45 \mathrm{~m}+5 \mathrm{~h}$ - ${ }^{4}$ find arrival time: $8.05(\mathrm{am})$	4	1. Correct answer without working award 4/4 2. Minimum requirement for $4^{\text {th }}$ mark: correctly adding a time involving hours and minutes to $9 \cdot 20$ 3. Some common answers (no working necessary) (a) $8 \cdot 05 \mathrm{pm}$ or 2005 award $3 / 4 \checkmark \checkmark \checkmark x$ (b) $9 \cdot 20+5 \cdot 45-5=10 \cdot 05(\mathrm{pm})$ or 2205 award 3/4 $\checkmark \checkmark \times \checkmark$ (c) $3220 \div 560=5.75$ award $1 / 4 \quad \checkmark \times \times x$ (d) $5.45(\mathrm{am} / \mathrm{pm})$ award $2 / 4 \checkmark \checkmark x x$ (e) $5 \cdot 45+5=10 \cdot 45$ award $2 / 4 \checkmark \checkmark \times x$ (f) $9 \cdot 20+5=2 \cdot 20$ award 0/4 (g) $9 \cdot 20+5 \cdot 45=3 \cdot 05(\mathrm{am})$ or 0305 award 3/4 $\checkmark \checkmark \times \checkmark$ (h) 3.05 pm or 1505 award 2/4 $\checkmark \checkmark \times x$

	stio	Expected Answer/s	Max Mark	Additional Guidance
6	a	Ans: $4 \mathrm{t}+\mathbf{2 9}$ - ${ }^{1}$ multiply out one bracket: $6 t+15$ or $14-2 t$ - ${ }^{2} \quad$ multiply out both brackets and know to add: $6 t+15+14-2 t$ -3 collect like terms: $4 t+29$	3	1. Correct answer without working award $3 / 3$ 2. Some common answers (a) (i) $8 t+29$ award $2 / 3$ (ii) $6 t+15$ $14-2 t \rightarrow 8 t+29$ award $2 / 3 \checkmark \checkmark x$ (b) (i) $6 t+15 \quad 14-2 t \quad$ award $1 / 3 \quad \checkmark x x$ (ii) $6 t+15=14-2 t$ award $1 / 3 \checkmark x x$ (c) $3^{\text {rd }}$ mark is not available if there is invalid subsequent working eg $4 \mathrm{t}+29 \rightarrow 33 \mathrm{t} \quad$ award $2 / 3$ $4 t+29 \rightarrow t=29 / 4$ award $2 / 3$
6	b	Ans: 4(3p-5) - ${ }^{1} \quad$ identify common factor: 4 or $3 p-5$ ${ }^{2}$. factorise: $4(3 p-5)$	2	1. $2(6 p-10)$ award $1 / 2 \times \checkmark$
7		Ans: 24 - ${ }^{1}$ know how to find volume: $15 \times 10 \times 20$ -2 know how to find number of glasses: $(15 \times 10 \times 20) \div 125$ - ${ }^{3}$ carry out calculations correctly: 24	3	1. Correct answer without working award $3 / 3$ 2. Some common answers (no working necessary) $3000[15 \times 10 \times 20]$ award $1 / 3 \quad \checkmark \times x$

	stio	Expected Answer/s	Max Mark	Additional Guidance
8	a	Ans: €1630 - ${ }^{1} \quad$ convert $£ 1300$ into euros: $1300 \times 1 \cdot 26=1638$ - ${ }^{2} \quad$ round to nearest appropriate 10 : 1630	2	1. Correct answer without working award $2 / 2$ 2. $1030[1300 \div 1 \cdot 26=1031 \cdot 74 \ldots \rightarrow 1030]$ award $1 / 2 \times \checkmark$ (no working necessary)
8	b	Ans: £1293.65 - ${ }^{1}$ know how to convert answer to (a) into sterling: $1630 \div 1.26$ - ${ }^{2} \quad$ convert answer to (a) into sterling rounded to nearest appropriate penny: 1293.65	2	1. Correct answer without working award $2 / 2$ 2. Alternative method: (working must be shown) (i) $1300-(8 \div 1 \cdot 26)=1293 \cdot 65$ award $2 / 2$ (ii) $8 \div 1 \cdot 26=6 \cdot 35$ award $1 / 2$ 3. If $(a)=1640$ then for (b) $=1301 \cdot 58$ or 1301.59 award $2 / 2$ (no working necessary) 4. If $(a)=1030$ then for $(b)=$ (i) $817 \cdot 46[1030 \div 1 \cdot 26]$ (no working necessary) award $2 / 2$ (ii) $1297 \cdot 80$ [1030 $\times 1 \cdot 26]$ (no working necessary) award $1 / 2 \checkmark x$ [$2{ }^{\text {nd }}$ mark is only available where answer has to be rounded or truncated to the nearest penny] 5. Some common answers (no working necessary) 1294, 1293•7(0), 1293•6(0) award $1 / 2 \checkmark x$

	tio	Expected Answer/s	Max Mark	Additional Guidance
9	a	Ans: 85 - ${ }^{1}$ find angle at centre of "cycle" sector: 34 -2 know how to find number of pupils who cycled: $\begin{aligned} & 34 \div 360 \times 900 \text { or } \\ & 900 \div 360 \times 34 \text { or } \\ & 34 \div(360 \div 900) \end{aligned}$ - ${ }^{3}$ find number of pupils who cycled: 85	3	1. Correct answer without working award $3 / 3$ 2. $815[\mathrm{car}+$ bus + walk $=326 \div 360 \times 900]$ award $2 / 3 \quad \times \checkmark \checkmark$ (no working necessary) 3. Some common answers (working must be shown) (a) 34% of $900=306$ (b) $34 \div 360=0 \cdot 094 \ldots$. award $2 / 3$ (c) $34 \div 360=0.09$ award $1 / 3$ (d) $900 \div 360=2 \cdot 5$ award $1 / 3$ (e) $360 \div 900 \times 34=13 \cdot 6,14$ or 13 award $2 / 3$ (f) $360 \div 900=0 \cdot 4$ award $0 / 3$
9	b	Ans: After the campaignmore walked ...more cycled ...fewer travelled by car ...fewer travelled by bus - ${ }^{1}$ state any one of the above : - ${ }^{2} \quad$ state another one of the above:	2	1. Answer must imply comparison of both pie charts (a) increase, decrease, now, before, etc. \Rightarrow comparison eg award $2 / 2$ for (i) now more walk and cycle (ii) more travelled by car or bus before (b) most, more, less \Rightarrow only one pie chart may have been considered eg award $0 / 2$ for (i) more walk and cycle (ii) less travelled by car or bus 2. Disregard invalid statements

Question		Expected Answer/s	Max Mark	Additional Guidance
10		Ans: 62° - ${ }^{1}$ use correct cosine ratio: $\cos x^{\circ}=6 / 7$ $\bullet^{2} \quad$ correct use of $\cos ^{-1}$: $\cos ^{-1}(6 / 7)$ -3 carry out inverse trigonometric calculation: 31 - ${ }^{4}$ find shaded angle: 62	4	1. Some answers without working (a) $62 \quad$ award $4 / 4$ (b) 31 award $3 / 4 \quad \checkmark \checkmark \checkmark x$ 2. Do not penalise inadvertent use of radians or grads $1(\cdot 08 \ldots)$ (radians used) award $4 / 4$ 69, 68.8(9), 68.9 (grads used) award 4/4 3. Award of $2^{\text {nd }}$ mark (a) Accept $\cos ^{-1} 0 \cdot 857 \ldots, \cos ^{-1} 0 \cdot 86$, $\cos ^{-1} 0 \cdot 85$ (b) Do not accept $\cos ^{-1} 0 \cdot 9, \cos ^{-1} 0 \cdot 8$ 4. Where an incorrect trig ratio is used, working should be followed through with the possibility of awarding $3 / 4$. [Do not penalise premature rounding or truncation except in cases like 3(b) above] (a) $\sin ^{-1}(6 / 7)=59 \times 2=118$ award 3/4 $\times \checkmark \checkmark \checkmark$ (b) $\tan ^{-1}(6 / 7)=40.6 \times 2=81.2$ award 3/4 $\times \checkmark \checkmark \checkmark$ (c) $\tan ^{-1}(7 / 6)=49.4 \times 2=98.8$ award 3/4 $\quad \times \checkmark \checkmark \checkmark$ (d) $\cos ^{-1}(7 / 6)$ award $1 / 4 \quad x \checkmark \times x$ 5. 4th mark only available for correctly doubling the answer to a trigonometric calculation.

[^0][END OF MARKING INSTRUCTIONS]

[^0]: TOTAL MARKS FOR PAPER 2 50

 ## TOTAL MARKS FOR PAPER 1 \& 2

