Due to copyright restrictions, the Resource Pack issued with this Question Paper cannot be placed on the web site.

X030/301

NATIONAL QUALIFICATIONS 2007

MONDAY, 4 JUNE 5 9.00 AM – 12.00 NOON

FABRICATION AND WELDING ENGINEERING HIGHER

100 marks are allocated to this paper.

The paper is based on a case study.

For this examination candidates should have the following:

- (a) Worksheet for Q3(*c*)
- (b) Resource Pack including extracts from EN 1011
- (c) Drawing instruments.

Candidates should attempt all questions.

Marks for each question are shown in brackets after the question.

A candidate who uses a calculator in answering questions must ensure that the method employed and any intermediate steps in the calculation are sufficiently clear in the answer.

This paper consists of a case study with questions.

The case study is based on a sketch (Figure 1).

Attempt ALL questions, using the information provided in the Resource Pack where appropriate.

CASE STUDY

Figure 1, on Page 4, illustrates details of a fabricated Portal Knee that has to be manufactured from 10 mm thick carbon steel with a composition as shown in the table below.

Material Composition:

Carbon	Silicon	Manganese	Nickel	Chromium	Molybdenum	Remainder Iron
(C)	(Si)	(Mn)	(Ni)	(Cr)	(Mo)	with acceptable
%	%	%	%	%	%	limits of impurities
0.2	0.1	1.5	0.15	0.1	0.2	

The welds for the manufacture of the Portal Knee are to be produced in the flat position, with access from both sides, using the Manual Metal Arc (MMA) welding process.

			Marks
1.	(<i>a</i>)	Explain why a constant current power source is necessary for the MMA process.	3
	(<i>b</i>)	Explain why the electrode used in this process is described as being "consumable".	1
	(<i>c</i>)	State four main functions of the coating on an MMA welding electrode.	4 (8)
2.	(<i>a</i>)	List the information shown by the weld symbol for the joint between web and flanges.	5
	(<i>b</i>)	Sketch the weld symbol for the welded joint shown at "x" between the two outer flanges "B".	3 (8)

			Marks
3.	(<i>a</i>)	Using the information detailed in the material composition table, calculate the Carbon equivalent for the material used for the manufacture of the Portal Knee.	5
		All steps in the calculation must be shown.	
	(<i>b</i>)	Determine the pre-heat temperature, if required, for the weld between the outer flanges "B".	6
		Note: Assume a Hydrogen scale appropriate for a rutile electrode and an arc energy of 1.6 kJ/mm .	
		All steps must be shown in determining the pre-heat temperature.	
	(c)	A partially completed Welding Procedure Qualification Record specification is provided in Worksheet Q3(c) . Complete this specification for the weld between the outer flanges B by inserting information required in the boxes marked with an asterisk (*).	17 (28)
4.		duce a planning operations sheet for the manufacture of the Portal Knee. e operations sheet should include information on each of the following:	
		 correct sequence of operations marking out cutting and forming processes assembly and joining processes inspection 	5 5 8 8 4
	and	should be appropriately designed.	5 (35)
5.	(<i>a</i>)	Sketch the resultant grain structure of the inner flange "A" after forming.	5
	(<i>b</i>)	Describe a suitable heat treatment process for re-establishing a uniform grain structure for inner flange "A" after forming.	4
	(c)	The welded structure is to be subjected to Magnetic Particle Inspection (MPI) on completion of manufacture. Describe the procedure for this method of testing.	8
	(<i>d</i>)	Describe one method of surface protection used for fabricated structures.	4 (21)

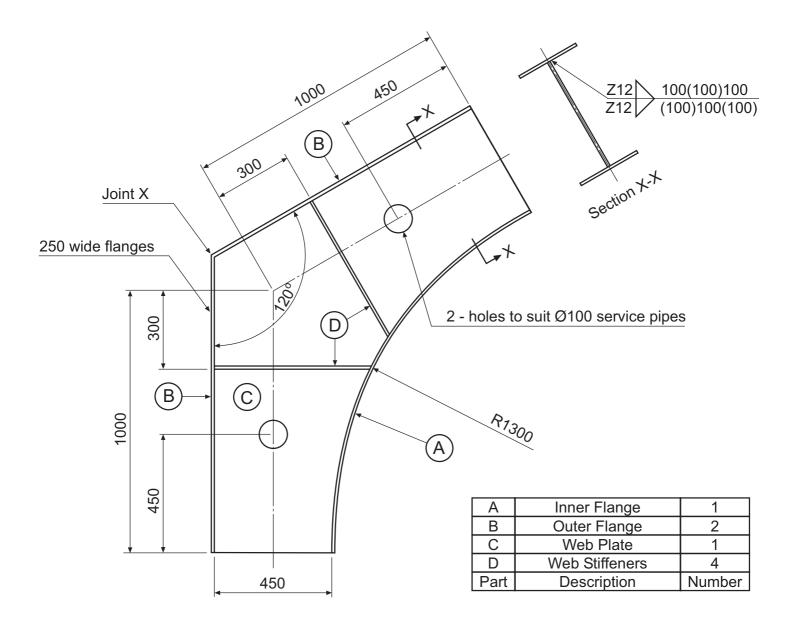


Figure 1 Note: All plates 10 mm thick

[END OF QUESTION PAPER]

X030/302		
NATIONAL QUALIFICATIONS 2007	MONDAY, 4 JUNE 9.00 AM – 12.00 NOON	FABRICATION ANI WELDING ENGINEERING HIGHER Worksheet for Question 3(<i>c</i>)
Fill in these boxes and	l read what is printed below.	
Full name of centre		Town
Forename(s)		Surname
Date of birth Day Month Year	Scottish candidate number	Number of seat
To be inserted inside th	e front cover of the candidate's a	inswer book and returned with it.

Mark

WELDING PROCEDURE QUALIFICATION RECORD (PQR)

Qualification: Code/Standards FOR EDUCATIONAL PURPOSES ONLY Date of issue June 2007

LR Office Glasgow

PQR Certificate number **SQA 01**

PWPS No. Rev.	Date of welding 06-06-2007	Manufacturer's name and address
Test place/location shop/site	Easyweld Ltd	
Workst	юр	
RANGE OF APPROVAL		
Welding process(es)	Single pass/multipass *	
Joint types(s) Butt/Fillets	Parent metal group(s)	Test joint details (sketch with dimensions) of weld preparation
Plate thickness range 5 mm to 20 mm	Pipe outside diameter range	*
Filler metal type/designation	Heat treatment N/A	
Gas/flux *	Type of welding current	
Welding positions Flat/HV	Progression (up/down)	
WELD AND FILLER METAL DETAI	ils	
Parent materials Carbon Steel	Test piece positions *	
Welding process MMA	Joint type *	Bead sequence detail (sketch to include weld metal thickness and back gouging where applicable)
Filler material Philarc R	Shielding gas/flux flow rate	*
Make/Type/Diameter Philarc	Gas composition N/A	
Composition Carbon Manganese	Flux type *	
Other information N		
Preheat and interpass temperature (method) and co *		
Postweld heat treatment temperature (method) and	l control	

PROCEDURE DETAIL							
RUN NUMBER	PROCESS	SIZE OF FILLER MATERIAL	CURRENT A	VOLTAGE V	AC/DC POLARITY	WIRE FEED/ TRAVEL SPEED	HEAT INPUT kJ/mm
۱	MMA	2.5	*	22	AC/DC	1.0 mm/sec	1.6
2	ΜΜΆ	3.2	*	23	AC/DC	1.5 mm/sec	1.5
3	MMA	4.0	*	23	AC/DC	1.7 mm/sec	2.0
others							
Date 06-06-2007		Welder's name Davie (Gordon	WPQ	Certificate No.	5QA 07	

[END OF WORKSHEET]