X025/201

NATIONAL	MONDAY, 4 JUNE	ELECTRONIC AND
QUALIFICATIONS	$9.00 \mathrm{AM}-11.30$ AM	ELECTRICAL
2007		FUNDAMENTALS
		INTERMEDIATE 2

100 marks are allocated to this paper.
Answer all questions in Section A (50 marks).
Answer two questions from Section B (25 marks each).
A Datasheet is provided for questions 5 and 8 .
In all your answers to questions requiring calculations, all working must be shown.

Section A

Attempt all the questions in this section (50 marks)

1. Convert the following numbers.
(a) Binary to decimal
11001011_{2}
(b) Decimal to hexadecimal 96_{10}
(c) Hexadecimal to binary $\quad \mathrm{E} 5_{16}$
2. The diagrams in Figure Q2 show input and output waveforms to and from electronic circuits labelled \mathbf{X} and \mathbf{Y}.

Figure Q2
State the full name for each type of circuit for:
(a) circuit \mathbf{X}; 2
(b) circuit \mathbf{Y}.
3. With reference to Figures Q3 (a) and (b), identify the following circuit symbols.
(a)

Figure Q3(a)
(b)

Figure Q3(b)
4.

Figure Q4
For the circuit shown in Figure Q4:
(a) determine the Boolean expression for output \mathbf{Z};
(b) draw the truth table for the circuit;
(c) determine the circuit output \mathbf{Z} when a fault condition causes input B to be permanently high.
5. Referring to Figure Q5 and using the supplied datasheet:

Figure Q5
(a) determine the maximum current the diode can handle;
(b) determine the typical forward voltage drop;
(c) calculate the maximum value of input voltage that can be applied.
6. The coil B shown in Figure Q6 moves at a constant speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$ through a magnetic field with a flux density of 0.8 T . The maximum induced voltage is 6.8 volts.

Figure Q6
(a) Calculate the effective length of the coil.
(b) State the two angles relative to the magnetic field where the maximum instantaneous voltage will occur.
7.

Figure Q7

With reference to the circuit shown in Figure Q7:
(a) identify the circuit configuration;
(b) calculate the circuit gain;
(c) determine the value of resistor R_{1};
(d) if the input voltage increases to 25 mV , determine the value of a resistor to replace R_{1}, to maintain the same value of output voltage.
8.

Figure Q8
Figure Q8 shows a logic circuit. With reference to the data sheet:
(a) draw the logic diagram;
(b) draw the truth table for the circuit;
(c) a fault condition causes input 9 on the 7408 to be permanently low. State the effect on the circuit output Z and justify your answer.
9.

Figure Q9
For the circuit shown in Figure Q9, determine:
(a) the resistance of the resistor R_{1};
(b) the current through the 3Ω resistor;
(c) the resistance of the resistor R_{2};
(d) the total circuit resistance.
[BLANK PAGE]

Section B

Attempt any TWO questions in this section (50 marks).

Each question is worth 25 marks.

10. (a) Identify the following circuit symbols:
(i)

(iii)

(iv)

(b) Under test conditions a diode was found to exhibit the following characteristics.

Figure Q10(b)
Identify with the use of the letters A to E on the characteristic Figure Q10(b) where the following begins:
(i) reverse breakdown;
(ii) forward conduction.
10. (continued)
(c) Identify the type of semiconductor device that would most likely produce the characteristic shown in Figure Q10(c) under test conditions.

Figure Q10(c)
(d) For the characteristics shown in Figure Q10(c) identify the areas where the device is acting as:
(i) a switch in the OFF position;
(ii) a current control device;
(iii) a switch in the ON position.
(e) Identify the circuit shown in Figure $\mathrm{Q} 10(e)(\mathrm{i})$ and identify the terminals labelled 1,2 and 3.
(i)

Figure Q10(e)(i)
10. (e) (continued)
(ii) Identify the circuit shown in Figure $\mathrm{Q} 10(e)$ (ii) and identify the terminals 1, 2 and 3 .

Figure Q10(e)(ii)
(iii) For the circuit shown in Figure Q10(e)(ii), determine the $\mathrm{pk}-\mathrm{pk}$ output voltage.
(f) Identify the circuit shown in Figure $10(f)$ and state one application.

Figure Q10(f)
11. (a)

Figure Q11(a)
For the circuit shown in Figure Q11(a), determine the voltage drop $\mathrm{V}_{\mathrm{R} 3}$.
(b)

Figure Q11(b)
For the circuit shown in Figure Q11(b), determine the voltage drops:
(i) V_{S};
(ii) V_{BC};
(iii) V_{DE}.
(c)

Figure Q11 (c)

For the circuit shown in Figure Q11(c), determine the current $\mathrm{I}_{\mathrm{R} 1}$.

11. (continued)

(d)

For the circuit shown in Figure Q11(d), determine:
(i) $\mathrm{I}_{\mathrm{R} 2}$;
(ii) I_{S}.
(e) A domestic heating system consists of four storage heaters, R_{1} to R_{4}, each with a 3 kW element. The circuit diagram, Figure Q11(e) shows how the heaters are connected.

Figure Q11(e)
Assuming that all the switches, S_{1} to S_{4}, are closed, calculate:
(i) the current in each heater element;
(ii) the current taken from the supply;
(iii) the resistance of each heater element;
(iv) the total resistance of the circuit;
(v) the total power dissipated in the circuit;
(vi) the total energy (in kWh) consumed in 2 days.
11. (continued)
(f) The current produced by a generator can be determined by the formula

$$
\mathrm{i}=250 \sin \theta \text { amperes }
$$

Determine:
(i) the maximum value of the current;
(ii) the value of the current generated when the angle between the generator's coil and the magnetic field is 60°;

2
(iii) the rms value of the current.

1
(g) A conductor of length 10 m and carrying a current of 10 A is placed in a magnetic field of $0 \cdot 10 \mathrm{~T}$.
(i) Calculate the force on the conductor.
(ii) Calculate the force on the conductor when the magnetic field is increased to 0.4 T .
(iii) State what will happen to the force on the conductor if both the current in the conductor and the magnetic field are reversed at the same time.
12. (a) Add the following binary numbers:
(i) 0111_{2} and 0101_{2}
(ii) 1000_{2} and 0110_{2}
(b) For the following truth table:

A	B	C	Z
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

(i) identify the logic gate; 1
(ii) draw the BS symbol; 1
(iii) state the Boolean expression. 1
(c) Draw the logic diagrams for the following expressions using ANSI symbols.
(i) $\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \mathrm{C}+\overline{\mathrm{B} \cdot \mathrm{C}}=\mathrm{Z} \quad 4$
(ii) $(\overline{\mathrm{P}+\mathrm{Q}+\mathrm{R}}) \cdot(\mathrm{P}+\mathrm{Q}+\overline{\mathrm{R}}) \cdot(\mathrm{P}+\overline{\mathrm{Q}}+\mathrm{R})=\mathrm{Z}$
12. (continued)
(d) Construct the truth tables for the circuit in Figures Q12(d)(i) and Q12(d)(ii).

Determine from the truth tables which single logic gate could replace each circuit.
(i)

Figure Q12(d)(i)
(ii)

Figure Q12(d)(ii)

X025/202

NATIONAL
QUALIFICATIONS
2007

MONDAY, 4 JUNE 9.00 AM - 11.30 AM

ELECTRONIC AND ELECTRICAL FUNDAMENTALS
INTERMEDIATE 2
Datasheets for Q5 and Q8

Datasheet for Question 5

LEDs

Diode Type	Part No	$\begin{gathered} I_{F} \\ \mathrm{~mA} \\ (\max) \end{gathered}$	$\begin{gathered} V_{F} \\ \mathrm{~V} \\ (t y p) \end{gathered}$	$\begin{gathered} V_{R} \\ \mathrm{~V} \\ (\text { max }) \end{gathered}$	Intensity (a) 10 mA mcd		View Angle (deg)	Peak wavelength (nm)
					min	max		
Red	L424HDT	25	2	5	$0 \cdot 5$	$3 \cdot 2$	100	700
H E red	L424IDT	30	2	5	$3 \cdot 2$	$12 \cdot 5$	100	625
Pure orange	L424NDT	30	2	5	$3 \cdot 2$	$12 \cdot 5$	100	610
Green	L424GDT	25	$2 \cdot 2$	5	$1 \cdot 3$	8	100	565
Yellow	L424YDT	30	$2 \cdot 1$	5	$1 \cdot 3$	8	100	590

Datasheet for Question 8

[END OF DATASHEETS]

