## 2012 Chemistry

## Standard Grade - Credit

## Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

## Standard Grade Chemistry Credit

## General information for markers

The general comments given below should be considered during all marking. It should be noted that these are general marking principles and may be superseded by decisions made at the Markers' Meeting.

1. Markers are reminded to read candidate responses in their entirety. If the candidate shows a clear understanding of the chemistry but does not use the exact words of the Marking Instructions they should still be given credit.
2. Markers are reminded that no comments are to be written on scripts. Comments such as 'ARITH', 'ERROR' and 'BOD' (Benefit of doubt) are not acceptable.
3. A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example: A student measured the pH of four carboxylic acids to find out how the strength is related to the number of chlorine atoms in the molecule. The results are shown.

| Structural Formula | pH |
| :--- | :---: |
| $\mathrm{CH}_{3} \mathrm{COOH}$ | 1.65 |
| $\mathrm{CH}_{2} \mathrm{ClCOOH}$ | 1.27 |
| $\mathrm{CHCl}_{2} \mathrm{COOH}$ | 0.90 |
| $\mathrm{CCl}_{3} \mathrm{COOH}$ | 0.51 |

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as "the more $\mathrm{Cl}_{2}$, the stronger the acid" should gain the full mark.
4. Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like "hydrolic acid" (for "hydrochloric acid") and "it gets hotter" (for "the temperature rises") should be accepted.

However the example below would not be acceptable, as an incorrect chemical term, which the candidate should know, has been given.

Example: If the correct answer is "ethene", and the candidate's answer is "ethane", this should not be accepted.
5. A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer "red, blue" gains no marks.
6. If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is "It has a low melting point", and the candidate's answer is "It has a low melting point and is coloured grey" this would not be treated as a cancelling error.
7. Full marks should be awarded for the correct answer to a calculation on its own; the part marks shown in the Marking Instructions are for use when working is given.
8. A half mark should be deducted in a calculation for each arithmetic slip.
9. A half mark should be deducted for incorrect or missing units only when stated in the Marking Instructions.
10. A half mark should be deducted for a transcription error.
11. Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the end result is used correctly.
12. Ignore the omission of one H atom from a full structural formula provided the bond is shown.
13. A symbol or correct formula should be accepted in place of a name.
14. If an answer comes directly from the text of the question, no marks should be given.

Example: Why do ionic compounds, like copper chloride, conduct electricity when in solution?

No marks for "because they are ionic" since the word "ionic" appears in the text.
15. Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as "to make it work" may be correct but it is not a chemical answer and the mark should not be given.
16. When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.
17. When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.
18. When marks have been totalled, a half mark should be rounded up.

## 2012 Standard Grade Chemistry <br> Credit Level

## Marking Instructions

## Part $1 \square 20$ marks

1
(a) A and E
1 or 0
(b) D
1 or 0

2
(a) $\mathrm{E} \quad 1$ or 0
(b) C

1 or 0

3
B and C
1 or 0

4
(a) $\mathrm{E} \quad 1$ or 0
(b) $D$

1 or 0
(c) A and C 1 or 0

5
(a) $\mathrm{F} \quad 1$ or 0
(b) C and $\mathrm{D} \quad 1$ or 0
(c) $\mathrm{D} \quad 1$ or 0

6
(a) $\mathrm{C} \quad 1$ or 0
(b) B

1 or 0

7
(a) E 1 or 0
(b) D and $\mathrm{F} \quad 1$ or 0
(c) $\mathrm{D} \quad 1$ or 0

8 (a) $\mathrm{A} \quad 1$ or 0
(b) C and E 1 or 0
$9 \quad$ B and $F \quad 2$ or 1 or 0

Please note that NO HALF MARKS are awarded in Part 1.

Part 2


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 11 (a) | 2 | 1 |  |  |
| (b) (i) | Larger particle size, smaller surface area. Large lumps. | 1 | Use lumps Particle size Surface area Catalyst removed | Particle size with wrong answer |
| (ii) | 0.5 g zinc | 1 |  |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 12 (a) | Both labels with units <br> $1 / 2$ mark <br> Both scales <br> $1 / 2$ mark <br> Plots correct (allow one error and <br> $1 / 2$ box tolerance) <br> $1 / 2$ mark <br> Plots joined <br> $1 / 2$ mark <br> Max 1 mark if bar/spike graph drawn <br> Deduct max $1 / 2$ mark if less than half of graph area is used <br> If both scales have numbers taken directly from the table maximum 1 mark <br> If extended down to axis - class as an error (plotting) <br> If scale written between bold lines but plots on bold lines deduct $1 / 2$ mark | 2 |  |  |
| (b) | If graph drawn answer must be from graph ( $1 / 2$ box tolerance) <br> If no graph drawn accept $25.5 \pm 1$ | 1 |  |  |
| (c) | Speed up reaction, too slow at $200^{\circ} \mathrm{C}$ | 1 | Any mention of decomposition Cost | Faster \& produces more ammonia |

Page 7

| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 13 (a) | Any suitable diagram showing two hydrogen atoms with two electrons in the overlapped area <br> $\mathrm{H} \times \mathrm{H} \quad \mathrm{H} \circ \mathrm{H}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | Petal/tetrahedral orbital diagram |  |
| (b) (i) | $\mathrm{MgSO}_{4}$ | 1 | $\mathrm{SO}_{4}$ |  |
| (ii) | 1.5 on its own 1 mark <br> if working shown (deduct $1 / 2$ mark for arithmetic error) | 1 | Wrong values selected from table |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :--- | :---: | :--- | :--- |
| $\mathbf{1 4}$ (a) | Hydrolysis | $\mathbf{1}$ | Digestion (with hydrolysis does not <br> negate) |  |
| (b) | Less/no activity <br> Wouldn't not work <br> Less efficient | $\mathbf{1}$ | ON THEIR OWN <br> Enzyme killed/denatured/destroyed <br> Reaction will be slower <br> Reactivity will be less <br> No reaction | Killed <br> Reaction would be <br> quicker |
| (c) | Fructose, galactose | $\mathbf{1}$ |  |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 15 (a) | $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ <br> Or correct multiples | 1 |  |  |
| (b) | neutralisation | 1 |  |  |
| (c) | $\mathrm{FM}=174 \mathrm{~g}$ (1 mark) <br> $78 / 174 \times 100=44.8$ (1 mark) <br> 44.8 or 45 on its own 2 marks <br> Deduct $1 / 2$ mark for arithmetic error <br> Using atomic numbers 44\% (max 1 mark) 44 must have working <br> If use mass of one potassium max 1 mark If use S or O max 1 mark | 2 | 44 on its own zero <br> If use element not in potassium sulphate - zero marks |  |
| (d) | $\left(\mathrm{NH}_{4}^{+}\right)_{3} \mathrm{PO}_{4}{ }^{3-}$ | 1 | $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 16 (a) | displacement redox | 1 | Oxidation/reduction |  |
| (b) (i) | $B /$ negative | 1 |  |  |
| (ii) | $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}$ <br> As per data booklet, ignore state symbols $\begin{aligned} & 2 \mathrm{Cl}^{-}-2 \mathrm{e} \longrightarrow \mathrm{Cl}_{2} \\ & \mathrm{Cl}^{-} \rightarrow 1 / 2 \mathrm{Cl}_{2}+\mathrm{e} \end{aligned}$ | 1 | $\mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}+\mathrm{e}$ |  |

Page 11

| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| $17 \quad$ (a) (i) | Red, pink, orange, yellow | 1 |  |  |
| (ii) | $\left.\begin{array}{l}\text { Line must be increasing } \\ \text { Line stops at pH7 or below }\end{array}\right\} \quad$ or 0 | 1 or 0 |  |  |
| (b) | $\begin{align*} & \mathrm{n}=\mathrm{c} \times \mathrm{v} \\ & \mathrm{n}=0.1 \times 0.05  \tag{1/2}\\ & \mathrm{n}=0.005 \text { moles } \tag{1/2} \end{align*}$ <br> 0.005 on its own 1 mark <br> Deduct $1 / 2$ if $50 \mathrm{~cm}^{3}$ not in litres ( 0.05 ) | 1 | $\mathrm{n}=\mathrm{c} \times \mathrm{v}$ on its own 0 marks <br> 5 on its own |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :--- | :---: | :--- | :--- |
| $\mathbf{1 8}$ (a) | lonic <br> lonic lattice <br> lonic network | $\mathbf{1}$ or 0 | lonic molecular <br> Lattice on its own <br> Network on its own <br> Sodium to chlorine bonds |  |
| (b) | As concentration increases/decreases freezing point <br> decreases/increases <br> The freezing point decreases/increases as <br> concentration increases/decreases <br> As concentration increases freezing point gets colder | $\mathbf{1}$ | Wrong cause \& effect eg: <br> As freezing point decreases <br> concentration increases. |  |
| (c) | -1.8 to -2.0 inclusive | $\mathbf{1}$ | Statement <br> Less than -1.5 |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :--- | :---: | :---: | :---: |
| 19 (a) | oxidation | 1 or 0 |  |  |
| (b) | Left to right indicated on or near the wire | 1 | if line goes into cell 0 marks |  |
| (c) | C, graphite, carbon | 1 |  |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 20 (a) | Diagram must show three monomer units linked together <br> One end bond missing no penalty <br> Two end bonds missing deduct $1 / 2$ mark | 1 or 0 | If molecule closed at both ends zero marks |  |
| (b) | thermosetting <br> thermoset <br> thermal setting | 1 |  |  |
| (c) |  | 1 |  |  |


| Question | Acceptable Answer | Mark | Unacceptable Answer | Negates |
| :---: | :---: | :---: | :---: | :---: |
| 21 (a) | by electrolysis | 1 or 0 |  |  |
| (b) | alloy | 1 | compound | compound |
| (c) (i) | 25g | 1 |  |  |
| (ii) | (allow follow through from (c)(i)) $\text { (25/27 = }{ }^{1 / 2} 0.926 / 0.931 / 22$ <br> $0.926,0.93$ or 0.9 on its own (1 mark) <br> if atomic numbers used (1.9) maximum $\underline{1 ⁄ 2}$ mark | 1 |  |  |

[END OF MARKING INSTRUCTIONS]

