2010 Chemistry

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Intermediate 2 Chemistry

General information for markers

The general comments given below should be considered during all marking. It should be noted that these are general marking principles and may be superseded by decisions made at the Markers Meeting.

1. Markers are reminded to read candidate responses in their entirety. If the candidate shows a clear understanding of the chemistry but does not use the exact words of the Marking Instructions they should still be given credit.
2. Markers are reminded that no comments are to be written on scripts. Comments such as 'ARITH', 'ERROR' and 'BOD' (Benefit of doubt) are not acceptable.
3. A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer ' 3 , methyl-hexane' should gain the full mark ie ignore wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	pH
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.
4. Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like "hydrolic acid" (for "hydrochloric acid") and "it gets hotter" (for "the temperature rises") should be accepted.

However the example below would not be acceptable, as an incorrect chemical term, which the candidate should know, has been given.

Example: If the correct answer is "ethene", and the candidate's answer is "ethane", this should not be accepted.
5. A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer "red, blue" gains no marks.
6. If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.
7. Full marks should be awarded for the correct answer to a calculation on its own; the part marks shown in the Marking Instructions are for use when working is given.
8. A half mark should be deducted in a calculation for each arithmetic slip.
9. A half mark should be deducted for incorrect or missing units only when stated in the Marking Instructions.
10. A half mark should be deducted for transcription errors.
11. Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the end result is used correctly.
12. Ignore the omission of one H atom from a full structural formula provided the bond is shown.
13. A symbol or correct formula should be accepted in place of a name unless stated otherwise in the Marking Instructions.
14. If an answer comes directly from the text of the question, no marks should be given.

Example: Why do ionic compounds, like copper chloride, conduct electricity when in solution?
No marks for "because they are ionic" since the word "ionic" appears in the text.
15. Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a nonchemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as "to make it work" may be correct but it is not a chemical answer and the mark should not be given.
16. With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.
17. When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

18. When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.
19. When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.
20. When marks have been totalled, a half mark should be rounded up.

2010 Chemistry Intermediate 2

Marking Scheme

Section A

1	A	11	A	21	C
2	D	12	D	22	D
3	C	13	B	23	A
4	D	14	D	24	A
5	C	15	B	25	C
6	D	16	C	26	A
7	B	17	A	27	B
8	B	18	A	28	A
9	C	19	B	29	D
10	A	20	C	30	C

Marking Instructions

Chemistry Intermediate 2

Section B

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
1 (a)	Nucleus/nuclei	1 or 0		Protons and neutrons
(b) (i) (ii) (iii)	8 Ignore any units given Same/equal number of (positive) protons as (negative) electrons Positive charge of protons cancels negative charge of electrons Protons cancel out electrons Alkali metals	1 or 0 1 or 0 1 or 0	Same number of positive and negative charges	Wrong charge eg negative protons cancel positive electrons Nucleus attracts same number of protons and electrons Charges cancel (if no mention of protons/electrons) Any named group 1 metal Alkaline metals Alkali on its own Alkaline on its own Reactive metals Group 1 metals

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$2 \quad$ (a)	Endothermic	1 or 0		Chemical reaction Freezing
(b)	(s) and (1) and (aq) Accept capitals Ignore size All 3 for 1 mark	1 or 0		
(c)	Solvent	1 or 0		Solution Aqueous Solute
(d)	$\begin{aligned} & \frac{6 \cdot 72}{0 \cdot 2 \times 4 \cdot 2} \\ & =8 \end{aligned}$ or 8 on its own	1 or 0	Correct working shown but with wrong answer An arithmetic mistake - $1 / 2$ mark Correct working and no final answer	Wrong working 141.12 on its own

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth $\mathbf{0}$
$\mathbf{3}$ (a)	Covalent Network/lattice Ignore order given	$1 / 2$	covalent only network/lattice only covalent plus incorrect description of structure network/lattice plus incorrect description of bonding	Polar covalent 3D Tetrahedral Single bonds Molecular/discreet bonding Any mention of ionic cancels correct answer

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
(b) (i)	At least one of the symbols must be shown in correct place. Mixture of dots and crosses acceptable. Accept Lewis dot diagram Ignore inner electrons for carbon. Allow for one slip for misplaced electron. Allow for one slip for symbols. Accept electron pair on line of touching circles	1 or 0		Electrons missing. One of the pair of shared electrons not in the overlap. No symbols shown at all.

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
(ii)	 or Use professional judgement to establish tetrahedral shape. Symbols not required. Accept outer electron diagram if correct shape is shown. Dotted line and triangle not necessary. Professional judgement - Must not be square planar.	1 or 0		

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
4 (a) (i) (ii)	$25(\%)$ Accept between 24-26 If blank, check part (ii) and may award mark if 25% has obviously been used in the calculation $25 / 100 \times 6=1 \cdot 5$ $1 \cdot 5$ on its own Accept follow through from part (i) if it applies	1 or 0 1 or 0	$-1 / 2$ mark per arithmetic mistake	75
(b)	4 moles to 2 moles $\begin{aligned} & 4 \times 108 \mathrm{~g}=2 \times 248 \\ & 432=496 \\ & 1 \cdot 08=1 \cdot 08 \times 496 / 432 \\ & =1.24 \end{aligned}$ OR no of moles of $\mathrm{Ag} \quad=1.08 / 108$ $=0.01 \mathrm{moles}$ no of moles of $\mathrm{Ag}_{2} \mathrm{~S}=0.01 / 2$ $=0 \cdot 005$ $\begin{aligned} \text { GFM } \mathrm{Ag}_{2} \mathrm{~S} & =248 \\ \text { Mass of } \mathrm{Ag}_{2} \mathrm{~S} & =0.005 \times 248 \\ & =1.24 \end{aligned}$ Ignore units/absence of units/ incorrect units given Check paper for indication of final answer.	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$ 1	$-1 / 2$ mark per arithmetic mistake, even if correct final answer is given -1 mark if atomic numbers are used -1 mark if incorrect chemical used in calculation	If they only have calculated the GFM for $\mathrm{Ag}_{2} \mathrm{~S}$ (as 248)

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
5 (a)	Heat the catalyst and then the liquid paraffin/mineral wool Heat catalyst first	1 or 0	Heat the catalyst (with no mention of heating paraffin) Heat moved between the two chemicals Heat moved along the test tube Heat catalyst and the paraffin/wool	Heat paraffin then catalyst Heat paraffin/wool Description of type of flame used to burn
(b)	To prevent suck-back or some description	1 or 0		Blowback Tube can smash/crack Air bubble could form Prevent an explosion or other vague answer
(c) (i) (ii)	Aluminium oxide $/ \mathrm{Al}_{2} \mathrm{O}_{3} /$ formula must be correct (Aluminium) silicate Other silicate Allows reaction to occur at lower temperature Lower energy required Lower activation energy	1 or 0 $1 \text { or } 0$		Steel wool Correct name and incorrect formula cancels Cheaper Saves energy Can be reused Remains unchanged Prevents harmful gases being produced Does not affect outcome of the reaction Does not need to be heated To change temperature used

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
(d)	Addition Bromination Halogenations Additional Brominisation	$\mathbf{1}$ or 0		Addition polymerisation Addition plus incorrect Saturation

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
6 (a)	 Allow one slip: one missing bond but not in carbonyl group or one missing hydrogen Accept correct (partial) shortened structural formula	1 or 0		2 slips
(b)	Heptan-4-one/heptan4one /heptane-4-one/hept-4-one/ hept4one/hepta-4-one Must have hept, 4, and one	1 or 0		Septan-4-one Alkene ending given -hepten-4-one -one missing
(c)	$147-155$ approx 150 or any number within the range accept a range within the tolerance	1 or 0		Any other value

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$7 \quad$ (a) (i) (ii)	Fermentation Anaerobic respiration Enzyme/biological catalyst Enzyme protein Ignore names of enzymes given	1 or 0 1 or 0		Brewing Any named enzyme Protein Bacteria
(b)	Yeast is denatured/destroyed/loses its shape Enzyme is denatured/destroyed/loses its shape Yeast dies/is killed	1 or 0	Won't work at high temperatures Works best at lower temperatures Yeast works at optimum temperatures Works best at body temperature Works best at room temperature Does not work as well at high temperatures	Enzyme dies/killed Yeast reacts with heat
(c)	Distillation Correct description of the distillation process to include both boiling and condensation stages Fractional distillation	1 or 0		Boil it Boil it because alcohol and water have different boiling points Separate off the alcohol Remove water by evaporation Fractionating Fractionation

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$8 \quad$ (a)	Esters Alkyl alkanoates	1 or 0		Organic Ester plus any incorrect answer
(b) (i) (ii)	Hydrolysis Hydrolysed Accept spelling variations of the above Allow 1 slip - missing bond but not from COOH group or missing H but not from COOH group Accept (partial) shortened structural formula Ignore any attempt to draw alcohol	1 or 0 1 or 0		Hydrolysisation Hydrolysation De-esterification $2 \text { slips }$

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$9 \quad$ (a)	Photosynthesis	1 or 0		
(b)	Glucose turns Benedict's (solution) from blue to (brick) red/yellow/orange/green OR Iodine turns blue/black/purple with starch (no initial colour required) Must have initial colour with Benedict's for full mark Iodine turns blue/black with starch (and Benedict's turns brick red with glucose.) Tyndall beam test and correct result Do not need to say 'the other does not'	1 or 0	Benedict's turns brick red/yellow/orange/green with glucose.	Only colour change given Benedict's test Iodine test Tyndall beam Any mention of protein cancels correct answer
(c)	Circle /underline any of the -OH groups	1 or 0		Carbon atom included in answer
(d)	$\begin{aligned} & 2,8 \\ & 2,8,0 \end{aligned}$	1 or 0	Electron arrangement of neon/same as neon/ same electron arrangement of neon	Like neon Like electron arrangement of neon

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
10 (a)	Any value below 7 Accept a range if it is below 7	1 or 0		0-7
(b) (i) (ii)	As the temperature increases the solubility decreases OR As the temperature decreases the solubility increases Correct use of units in the description of the trend Allow slip e.g. lemonade instead of CO_{2} Correct cause and effect Looking for a trend Correct extrapolation of line Value must come from candidate's graph $+/-1 / 2$ box tolerance cross or point rather than line acceptable 1.90-1.94 if line not extrapolated	1 or 0 1 or 0		As the solubility of carbon dioxide decreases, the temperature increases. It has $1.2 \mathrm{gl}^{-1}$ at $30^{\circ} \mathrm{C}$ and $1.56 \mathrm{gl}^{-1}$ at $20^{\circ} \mathrm{C}$ Approximations not accepted Incorrect extrapolation of line

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
11 (a)	Acid rain Dissolved/absorbed SO_{2} Dissolved/absorbed NO_{2} /oxides of nitrogen/generic term Dissolved/absorbed CO_{2} Dissolved/absorbed soluble non metal oxides	1 or 0		Free H^{+}ions Nitrate pollution Pollution Sulphur dioxide Nitrogen dioxide Carbon dioxide
(b) (i) (ii)	Calcium, carbon, oxygen $\mathrm{Ca} / \mathrm{C} / \mathrm{O} / \mathrm{O}_{2}$ all 3 for 1 mark Water $/ \mathrm{H}_{2} \mathrm{O}$ hydrogen $/ \mathrm{H}_{2}$	1 or 0 $1 \text { or } 0$		Any incorrect element will cancel H Any incorrect formula

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
12 (a)	Stops air/oxygen or water/moisture Physical barrier to air/oxygen or water/moisture Stops iron losing electrons to oxygen and water Ignore mention of salt if correct reference to water/oxygen	1 or 0		Painting provides barrier Physical protection Physical barrier Stops water, oxygen and hydrogen getting to it Stops iron losing electrons Less water/oxygen
(b) (i) (ii)	Galvanising Galvanisation Zinc sacrifices itself Zinc gives sacrificial protection Zinc is being oxidised Zinc corrodes (by losing electrons) The zinc gives away its electrons (to the iron) Zinc is more reactive Zinc is higher up in the ECS (or reverse of above for iron) If the word 'it' is used it should refer to iron in the answer	1 or 0 $1 \text { or } 0$		Sacrificial protection Zinc displaces iron Zinc is too strong for iron Zinc rusts Any mention of ions cancels

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$\mathbf{1 3}$	(a)	The reading on the pH probe shows 7/neutral (pH probe) turns green/becomes neutral/goes to7 pH turns to 7 End point of neutralisation/complete neutralisation	$\mathbf{1}$ or 0	
Turns				
colour				
Neutralisation				
Until reaction has finished				

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
(b)	$\begin{aligned} \text { Moles of acid } & =\mathrm{C} \times \mathrm{V} \\ & =0 \cdot 1 \times 0.02 \\ & =0.002 \end{aligned}$ 1 mole to 2 moles $\text { moles of } \mathrm{NaOH}=0.002 \times 2=0.004$ $\begin{aligned} \mathrm{c} & =\mathrm{n} / \mathrm{v} \\ & =0.004 / 0.05 \\ & =0.08 \end{aligned}$ OR $\begin{aligned} \mathrm{H} \times \mathrm{C} \times \mathrm{V} & =\mathrm{OH} \times \mathrm{C} \times \mathrm{V} \\ 2 \times 0 \cdot 1 \times 20 & =1 \times \mathrm{C} \times 50 \\ 4 & =50 \mathrm{C} \\ \mathrm{C} & =4 / 50 \\ & =0.08 \end{aligned}$ OR		$-1 / 2$ per arithmetic error $-1 / 2$ if cm^{3} used instead of litres only in method 1 $-1 / 2$ if cm^{3} and litres mixed in method $2 / 3$	

Question	Acceptable Answer	Mark	Worth $1 / 2$	Worth 0
$14 \quad$ (a) (i) (ii)	LHS = copper $/ \mathrm{Cu}$ Top RHS = Iron/Fe Bottom RHS $=100 \mathrm{~cm}^{3} 0 \cdot 1 \mathrm{moll}^{-1}$ all 3 for 1 mark Repeated ($1 / 2$) to allow averages/mean ($1 / 2$) to be calculated	$1 \text { or } 0$ $2 \times 1 / 2$	More than one measurement taken Calculate average	Control of other variables
(b) (i) (ii)	From right to left \rightarrow arrow should be on wires or very close to it (good) conductor of electricity Contains delocalised electrons Conducts Conductive Free moving electrons	1 or 0 1 or 0		Arrow in solution Arrow in solution and on wires cancels Cheap Insoluble Solid Unreactive

[END OF MARKING INSTRUCTIONS]

