2013 Chemistry

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Chemistry Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Chemistry Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would not be treated as having a cancelling error.

4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the marking scheme are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.

5 A half mark should be deducted in a calculation for each arithmetic slip.
6 A half mark should be deducted for incorrect or missing units only when stated in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.

9 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

11 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1:The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although the punctuation is not correct, '3, methyl-hexane' should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	pH
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.

17 When marks have been totalled, a half mark should be rounded up.

Part Two: Marking Instructions for each Question

Section A

	Acceptable Answer/s
16	D
17	A
18	A
19	C
20	B
21	D
22	B
23	D
24	B
25	C
26	A
27	D
28	B
29	A
30	A

Question		Acceptable Answer/s
31		
32		
33		
34		
35		
36		D
37		C
38		
39		
40		B

Question		Acceptable Answer/s	Max Mark	1/2 mark	Unacceptable
1	a	reforming / reformation	1		cracking
1	b	2,2,4-trimethylpentane or isooctane (General marking instruction 14 applies)	1		Octane 2,2-dimethyl-4methylpentane
1	c	It has branches or shorter chain	1		Higher octane number Burns more smoothly Less prone to preignition (\& similar)
1	d	methanol toxic (or poisonous or makes you blind) or $\mathrm{CO}_{2} / \mathrm{CO}$ emissions or (burns to) produce greenhouse gases or acidic emissions or energy released by methanol is less than petrol or fewer miles per gallon or methanol is corrosive or methanol is made from fossil fuels (or not renewable / limited) or methanol is hygroscopic (absorbs water) requires a bigger fuel tank	1	Burns to produce harmful gases	Harmful to the environment (with no indication of how) Methanol is expensive

Question			Acceptable Answer/s	Max	1/2 mark	Unacceptable
2	a		Purple/magenta/violet/lilac (pink) to colourless or purple (pink) decolourises (disappears/goes away))	1	purple to clear or decolourises (with no mention of initial colour)	Indigo colourless to purple incorrect colour to colourless or purple to any colour purple/black or purple/blue
2	b	i	$58\left({ }^{\circ} \mathrm{C}\right)$ (units not required. Incorrect units $-1 / 2$ mark)	1	Calculation of relative rate $r=1 / 25=0.04(1 / 2)$ or 57 or $59^{\circ} \mathrm{C}(1 / 2)$ or Reading the temperature associated with a calculated relative rate correctly from graph ($1 / 2$)	
2	b	ii	(colour) change too gradual (or similar) or the colour changes too slowly or end-point too difficult to see	1		Reaction is too slow too cold/cool or does not react these temperatures not on graph
2	c		More molecules (particles) have enough energy to collide successfully more molecules have sufficient energy to react more molecules with (kinetic) energy greater than the activation energy more molecules form the activated complex (1)	1	molecules collide with greater energy/force (harder) ($1 / 2$) more successful collisions ($1 / 2$)	more collisions molecules collide more often molecules move faster more energy with no mention of collisions or E_{a}

Question			Acceptable Answer/s		1/2 mark	Unacceptable
4	a	i	$\begin{aligned} & \mathrm{K}(\mathrm{~g}) \rightarrow \mathrm{K}^{+}(\mathrm{g})+\mathrm{e}^{-}(1) \\ & \mathrm{K}(\mathrm{~g}) \rightarrow \mathrm{K}^{+}(\mathrm{g})+\mathrm{e}(1) \end{aligned}$	1		Missing or incorrect state symbols
4	a	ii	Answers can be given either in terms of potassium or of chlorine Answers starting with "it" are assumed to refer to Potassium Either K has more shells/levels or electron further from nucleus or diagram showing this ($1 / 2$) Correct and clear use of greater shielding/screening (or clear explanation thereof) (1) So less energy required to remove electron /weaker attraction for the electron ($1 / 2$) or Cl has fewer shells or electron closer to nucleus (1/2) Correct and clear use of less shielding/screening (or clear explanation thereof) (1) So more energy required to remove electron / stronger attraction for the electron $(1 / 2)$	2		
4	b		8	1		Circling OH groups but not stating the number

Question		Acceptable Answer/s	Max Mark	1/2 mark	Unacceptable
6	a	Student wording may vary, markers should be looking for the key ideas expressed below. Trichloromethane is polar or tetrachloromethane is non-polar ($1 / 2$) trichloromethane is capable of forming (permanent) dipole/(permanent) dipole attractions (1/2) tetrachloromethane is only capable for forming Van der Waal's/London Dispersion Forces ($1 / 2$) water is polar solvent/forms (permanent) dipole/(permanent) dipole bonds/like dissolves like/is a good solvent for polar substances (1/2)	2		There is hydrogen bonding in water Trichloromethane or tetrachloromethane has polar (covalent) bonds- if mentioned without further explanation
6	b	absorbs (harmful) UV or reduces (or stops) $\underline{\text { UV }}$ reaching earth or protects (us) from UV or filters the UV	1		absorbs rays (or light) from Sun or anything to do with greenhouse effect or IR or absorbs harmful radiation or reflects (harmful) UV

Question			Acceptable Answer/s	Max	1/2 mark	Unacceptable
7	a		Tollen's or acidified dichromate or fehling's or benedict's (accept other spellings if phonetically correct)	1		
7	b	i	8	1		
7	b	ii	Oxidation / oxidisation	1		
8	a		 Do not penalise for transcription errors in the carbazole part of the molecule.	1		
8	b		in photocopiers or in laser printers or as a photoconductive (material) or as something that conducts electricity when light shines on it or in light sensors or used in solar cells or solar powered calculators or any photoluminescent/ electroluminescent device or application Poly(vinylcarbazole) films give out a steady blue glow when an electric current is passed through them, but produce no heat, so have now found a lot of applications in illuminated signage etc.)	1		Photography calculators

Question			Acceptable Answer/s	Max	1/2 mark	Unacceptable
9	a		Ethane-1,2-diol contains two/more OH groups or ethane-1,2-diol forms more/ stronger hydrogen bonds or more energy needed to break the hydrogen bonds	1	Stronger intermolecular forces (no mention of type) or More energy needed to break intermolecular bonds (no mention of type)	Ethane-1,2-diol has larger molecular mass Ethane-1,2-diol has stronger van der Waal's interactions/ London Dispersion Forces
9	b		2-methylbut-2-ene or methylbut-2-ene	1		2-methylbutene methylbutene
9	c		benzene-1,3-dicarboxylic (acid)	1		benzenedicarboxylic acid 1,3-dicarboxybenzoic acid benzene-1,3-dicarboyl
10	a	i	amino group or amine group	1		amino acid group NH_{2} group amide
10	a	ii	 Accept full or shortened structural formula. (general marking instruction 9 applies)	1		
10	b		25 (minutes) or 8.0 to 8.4 (minutes) (units not required. Ignore incorrect units)	1		

Question			Acceptable Answer/s		1/2 mark	Unacceptable
13	a	i	Partially dissociated (1) or Not completely ionised (1)	1		
13	a	ii	Equilibrium would shift to right/forward or More products formed	1	NH_{3} reacts with H^{+}	
13	b		```\(0.29 \mathrm{~g} \mathrm{(2)}\) \(0.29\left(1 \frac{1}{2}\right)\) \(290 \mathrm{~g}(11 / 2)\left(79 \mathrm{~cm}^{3}\right.\) not converted into litres) 290 (1)``` Units are required, deduct $1 / 2$ mark for missing or incorrect units $\begin{aligned} & \text { Method one } \\ & \text { moles } \mathrm{H}_{2} \mathrm{~S}=\frac{0.079}{24} \text { or } 0.00329(1 / 2) \\ & \text { moles } \mathrm{FeS}=0.00329 \\ & \text { GFM FeS }=87.9 \mathrm{~g}(1 / 2) \\ & \text { mass FeS }=87.9 \times 0.00329(1 / 2) \\ & \text { mass Fe S }=0.29 \mathrm{~g} \mathrm{y} 1 / 2 \text { mark } \end{aligned}$ Method two	2		

Question			Acceptable Answer/s	Max	1/2 mark	Unacceptable
14	a	i	synthesis gas (1) or syngas (1)	1		Synthetic gas
14	a	ii	(+)206 $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right.$ or $\left.\mathrm{kJ} \mathrm{or}^{\mathrm{KJ} \mathrm{mol}}{ }^{-1}\right)(2)$ (units not required, deduct $1 / 2$ mark for incorrect units)	2	$\begin{aligned} & -803(1 / 2) \\ & +726(1 / 2) \\ & +283(1 / 2) \end{aligned}$ Further $1 / 2$ mark for correct addition of three sensible numbers A final value of -206 is worth a total of $1 / 2$ mark	
14	b			1		
			temperature decrease/keep the same/increase 1/2 for each correctly pressure decrease/keep the same/increase circled option			
15	a		$\begin{aligned} & \begin{aligned} & \mathrm{mc} \Delta \mathrm{~T}=0.050 \times 4.18 \times 4.5(1 / 2 \text { for } 0.050 \& 1 / 2 \text { for other values) } \\ &= \pm 0.94 \mathrm{~kJ} \text { (sign and units not required at this stage) } \\ & \text { Or }=50 \times 4.18 \times 4.5(1 / 2 \text { for } 50 \& 1 / 2 \text { for other values) } \\ & \mathrm{mc} \Delta \mathrm{~T}= \pm 940 \mathrm{~J} \text { (units not required at this stage) } \\ & \text { (Deduct } 1 / 2 \text { mark if incorrect units are given here only } \\ & \text { if this is the end of the candidate's answer) } \end{aligned} \\ & \begin{aligned} & \mathrm{H}_{2} \mathrm{O} \text { moles }=0.025(1 / 2 \text { for working out moles of water) } \\ & \Rightarrow 0.025 \mathrm{~mol} \leftrightarrow \pm 0.94 \mathrm{~kJ} \\ & \Rightarrow 1 \mathrm{~mol} \leftrightarrow \pm 0.94 \\ &= \pm 38 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 / 2) \end{aligned} \end{aligned}$ (Units not required, deduct $1 / 2$ mark for incorrect units in the final answer) (Do not deduct $1 / 2$ mark if negative sign missing from final answer)			

Question			Acceptable Answer/s	Max Mark	1/2 mark	Unacceptable
15	b		Lid added / use polystyrene (plastic) cup / insulate beaker / closed container heatproof container	1		Use a copper can Use a draught shield Use a digital thermometer Cotton wool plug
15	c		Initial temperature of (both) solutions or the average start temperature ($1 / 2$) Maximum/final/end temperature (of mixture) ($1 / 2$)	1		
16	a		$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(1)$ or $\mathrm{I}_{2}+2 \mathrm{e} \rightarrow 2 \mathrm{I}^{-}(1)$ Ignore state symbols Allowing reversible arrows providing the equation is written the correct way round.	1		
16	b	i	first titre is a rough (or approximate) result / practice or first titre is not accurate / not reliable / rogue or first titre is too far away from the others or you take average of concordant/close results (1)	1		

Question			Acceptable Answer/s ${ }^{\text {a }}$ ($\begin{gathered}\text { Max } \\ \text { Mark }\end{gathered}$	1/2 mark	Unacceptable
16	b	ii	0.045 or $0.05\left(\mathrm{moll}^{-1}\right)$ if working correct (2) Either moles $\mathrm{S}_{2} \mathrm{O}_{3} \quad 0.10 \times 0.01815=0.001815$ moles of $\mathrm{I}_{2} \quad \frac{0.001815}{2} \underset{(1 / 2)}{=0.0009075}$ concentration $\mathrm{I}_{2} \frac{0.0009075}{0.0200}$ concentration $\mathrm{I}_{2} \quad 0.045(1 / 2)$ (units not required, deduct $1 / 2$ mark for incorrect units) or Candidates may use a "titration" formula of which an example is shown below. $\frac{c_{1} V_{1}}{b_{1}}=\frac{c_{2} V_{2}}{b_{2}}$ For inserting the correct "stoichiometric" values in this equation award ($1 / 2$) [eg $b_{1}=1$ if $b_{2}=2$ if the student had decided to make substance "one" iodine] For inserting the correct pairings of concentrations and volumes (volumes can be in litres or in $\left.\mathrm{cm}^{3}\right)\left(\frac{1}{2}\right)$ $\frac{c_{1} \times 20}{1} \quad \frac{0.10 \times 18.15}{2}$ For correct rearrangement ($1 / 2$) $c_{1}=\frac{0.10 \times 18.15 \times 1}{2 \times 20}$ concentration $\mathrm{I}_{2} 0.045(1 / 2)$ (units not required, deduct $1 / 2$ mark for incorrect units)		0.04 with no working because can be arrived at from 0.020 litres $\times 2$

Question		Acceptable Answer/s	Max Mark	mark	Unacceptable	
$\mathbf{1 8}$	b	i	The bigger the group the greater the strain or The larger the (halogen) atom the greater the strain or The more atoms in a group, the greater the strain or Any other statement which is consistent with the values presented	$\mathbf{1}$		Incorrect reference to a group as a "molecule"
$\mathbf{1 8}$	b	ii	7.6 (kJ mol (Units not required, ignore incorrect units)	$\mathbf{1}$		

[END OF MARKING INSTRUCTIONS]

