2012 Chemistry

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, 'It has a low melting point and is coloured grey' would not be treated as having a cancelling error.

4 Full marks are usually awarded for the correct answer to a calculation on its own; the part marks shown in the marking scheme are for use when working is given. An exception is when candidates are asked to 'Find, by calculation,'.

5 A half mark should be deducted in a calculation for each arithmetic slip.
6 A half mark should be deducted for incorrect or missing units only when stated in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 Ignore the omission of one H atom from a full structural formula provided the bond is shown.

9 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, a half mark should be deducted if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

10 When drawing structural formulae, a half mark should be deducted if the bond points to the 'wrong' atom, eg

11 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

12 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

13 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

14 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1:The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although the punctuation is not correct, ' 3 , methyl-hexane’ should gain the full mark.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	pH
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Although not completely correct, an answer such as 'the more Cl_{2}, the stronger the acid' should gain the full mark.

15 Unless the question is clearly about a non-chemistry issue, eg costs in industrial chemistry, a non-chemical answer gains no marks.

Example: Why does the (catalytic) converter have a honeycomb structure?
A response such as 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

16 When it is very difficult to make a decision about a partially correct answer, a half mark can be awarded.

17 When marks have been totalled, a half mark should be rounded up.

2012 Chemistry Higher
Marking Scheme

Section A

1	D	11	D	21	A	31	B
2	C	12	B	22	B	32	D
3	D	13	B	23	B	33	A
4	C	14	C	24	A	34	C
5	B	15	D	25	C	35	B
6	D	16	B	26	D	36	D
7	C	17	A	27	D	37	D
8	B	18	A	28	C	38	A
9	A	19	C	29	B	39	B
10	C	20	A	30	A	40	C

Mark Scheme			Worth 1 ²	Worth 0
1 (a)	Boron or Carbon or B or C or graphite or diamond	1		Silicon
(b)	Number of protons increases or increased atomic number or greater nuclear/positive charge (pull) or greater pull on (outer) electrons	1		Increased number of electrons or larger nucleus or stronger nucleus or any answer which does not indicate an increase in pull/charge

	Mark Scheme		Worth $1 / 2$	Worth 0
(a)	$E_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{~T}$ Correct substitution of data $\begin{aligned} & =4.18 \times 0.5 \times 82 \\ & = \pm 171 \mathrm{~kJ} \text { (no units required) } \quad 1 / 2 \text { mark } \\ & \text { (Deduct } 1 / 2 \text { mark if incorrect units are given here only } \\ & \text { if this is the end of the candidate's answer) } \end{aligned}$ Or $4.18 \times 500 \times 82$ $1 / 2$ mark $= \pm 171000 \mathrm{~J}$ (no units required) $\quad 1 / 2$ mark (Deduct $1 / 2$ mark if incorrect units are given here only if this is the end of the candidate's answer) $\begin{array}{ll}\text { Number of moles required }=\frac{171}{1367} & 1 / 2 \text { mark } \\ \text { Answer } 0.12 \text { or } 0.125 \text { or } 0.13 \text { moles } & 1 / 2 \text { mark }\end{array}$ (Candidates can work consistently work in J rather than kJ) ($5.75 \mathrm{~g}-1 \frac{1}{2}$ marks)	2		

Mark Scheme	Worth $1 / 2$	Worth 0	
(b) Heat lost to surroundings	1 mark $\quad \mathbf{2}$		
Incomplete combustion (of alcohol)	1 mark		
Ethanol impure	1 mark		
Loss (of ethanol) through evaporation	1 mark		

Mark Scheme		Worth 1 ²	Worth 0
4 (a) ${ }^{89} S r \rightarrow{ }^{89} Y+\beta$ or ${ }_{36}^{89} S r \rightarrow{ }_{39}^{89} Y+{ }_{-1}^{0} e$ Atomic numbers not required- if shown, they must be correct Mass numbers shown top left as in question paper	$1 \text { or } 0$		
(b) (i) No effect/no change (ii) $\frac{89}{160} \times 10=5.56 \mathrm{~g}$ or 5.6 g (No units required; deduct $1 / 2$ for incorrect units) Please check any working provided for this question as 5.6 can be the product of incorrect calculations.	$1 \text { or } 0$ 1 or 0	Correct formula mass of $\mathrm{SrCl}_{2}=160$	Answers calculated using ram of 87.6 for Sr Answers calculated using 158.6 as gfm for SrCl_{2}
(c) $1 / 4$ or 0.25 or 25%	1	For identifying 2 half-lives $1 / 2$	

Mark Scheme			Worth ½	Worth 0
5 (a)	$\begin{aligned} & 110\left(\mathrm{~cm}^{3}\right) \\ & \text { For the value } 6.02 \times 10^{23} \\ & \text { (24 litres) } \quad 24,000 \mathrm{~cm}^{3} \rightarrow 6.02 \times 10^{23} \\ & \text { For the ratio } \frac{110}{24000} \text { or } 4.58 \times 10^{-3} \\ & \begin{aligned} & 1 / 2 \\ &\left(0.110 \text { litres) } \begin{array}{rl} 110 \mathrm{~cm}^{3} \rightarrow 110 / 24000 \times 6.02 \times 10^{23} \\ & =2.76 \times 10^{21} \end{array}\right. \\ & 1 / 2 \end{aligned} \end{aligned}$	2		
(b)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}_{2}+4 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}^{+}$ or any balanced equation not showing electrons	$1 \text { or } 0$		Equations showing electrons
	Catalyst/reactants different state They are in different (chemical) states	$1 \text { or } 0$		Any mention of products

	Mark Scheme		Worth 1 ²	Worth 0
(a)	 Or any structure for an expansion of the shortened structural formula $\mathrm{CH}_{3} \mathrm{~S}_{2} \mathrm{CH}_{3}$ containing - 6 hydrogen atoms, valency 1 - 2 carbon atoms, valency 4 - 2 sulphur atoms, valency 2 or 4 or 6 All Bonds must be shown	1		Shortened structural formulae

Mark Scheme	Worth 1 ²	Worth 0
(b) (i) Either $\begin{array}{cl} \text { moles } & \mathrm{Cl}_{2} 0.010 \times 0.0294=2.94 \times 10^{-4} \\ \text { moles } & \mathrm{H}_{2} \mathrm{~S} 2.94 \times 10^{-4} / 4=7.35 \times 10^{-5} \\ \text { conc }^{\mathrm{n}} & \mathrm{H}_{2} \mathrm{~S} \tag{1/2}\\ & \frac{7.35 \times 10^{-5}}{0.05}(1 / 2) \\ & =\underline{1.47 \times 10^{-3}}(1 / 2) \end{array}$ OR Candidates may use a "titration" formula of which an example is shown below. $\frac{c_{1} v_{1}}{b_{1}}=\frac{c_{2} v_{2}}{b_{2}}$ For inserting the correct "stoichiometric" values in this equation award ($1 / 2$) [eg $b_{1}=4$ and $b_{2}=1$ if the student had decided to make substance "one" the chlorine] $\frac{29.4 \times 0.01}{4}=\frac{c_{2} \times 50.0}{1}$ For inserting the correct pairings of concentrations of volumes (can be in litres or in cm ${ }^{3}$) $(1 / 2)$ $c_{2}=\frac{29.4 \times 0.01}{4 \times 50.0}$ For correct rearrangement (1/2) Concentration of $\mathrm{H}_{2} \mathrm{~S}=1.47 \times 10^{-3}(1 / 2)$ (Units not required, deduct $1 / 2$ mark for incorrect unit)		

Mark Scheme		Worth ½	Worth 0
(ii) This question is divided into two separate marks, each subdivided First Mark Permanent dipole-permanent dipole attractions or polar-polar attractions/forces $1 / 2$ weak intermolecular bonds/forces $1 / 2$ Second Mark If they have named pd-pd then: Mention of difference in electronegativities or indication of polar bonds or indication of permanent dipole 1 mark If they have named VdW/LDF instantaneous dipoles or temporary dipoles or uneven distribution of electrons or electron wobbles 1	2		

Mark Scheme		Worth ½	Worth 0
7 (a) $\mathrm{w}=9 \mathrm{x}=6 \mathrm{y}=2 \mathrm{z}=2$ or $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$. Accept atoms in any order	1		
(b) no elimination of a small molecule (such as water) or the monomers have added across the $(N=C)$ double bond or only one product molecule formed or joined across the $(\mathrm{N}=\mathrm{C})$ double bond			Molecules add together Answers only mention the breaking of a double bond Answers only mentioning changes in saturation
(c) Dotted lines between H / N or H / O on adjacent polymer chains	1		Dotted lines drawn to $\mathrm{H}-\mathrm{C}$ atoms

Mark Scheme			Worth $1 / 2$	Worth 0
8 (a)	Amide link or peptide link or peptide bond	1		Amine or amino or cabonyl
(b)	Correctly drawn amino acid structure (Suspend General Marking Instructions 9 \& 10-in the case of ambiguity)			Structures where connectivity is clearly wrong
(c)	Essential	1 or 0		
(d)	Wet paper towel (condenser) or cold finger test tube (1) Use a condenser (1) Raise the test-tube so that a greater length of the test-tube is above the hot water, but with the reaction mix still immersed or lower the level of the water (1)			Bung Lower the temperature of the water bath Add/change the catalyst Change in temperature

Mark Scheme			Worth ½	Worth 0
(a)	Bromine (water)/iodine (solution) 1 ¹2 Either Oleic decolourises $1 / 2$ or stearic does not decolourise / decolourises slowly $1 / 2$ Do not award the second half mark if colour change given is incorrect. Do not award the second half mark if the fatty acids are not named.	1		"Goes clear" used in place of decolourises forfeits second half mark
(b)	Octadec -9, 12, 15 -trienoic acid Octadeca-9, 12, 15 - trienoic acid (allow the interchange of hyphens and commas)	1		Octadec-9,12,15-trinoic acid
(c)	Circle either ONa^{+}or $\mathrm{CO}^{-} \mathrm{Na}^{+}$or $\mathrm{COO}^{-} \mathrm{Na}^{+}$or O^{-}or $\mathrm{C}-\mathrm{O}^{-}$or COO^{-}	1		Any structure containing CH $\mathrm{C}=\mathrm{O}$ on its own Na^{+}on its own

Mark Scheme						Worth 1 ²	Worth 0
10 (a)	Air				1 or 0		
(b)	Methyl methanoate				1 or 0		
(c)	70\% 2 ma Either HCOOH 1 mole 46 g 1.38g $\%$ yield $=$ OR moles HCOO moles HCON HCOOH 0.03 moles \% yield	\rightarrow $\mathrm{H} \rightarrow$ $\mathrm{H}_{2} \rightarrow$ \rightarrow	HCONH_{2} 1 mole 45 g $1 \cdot 35 \mathrm{~g}$ $\begin{aligned} & \frac{0.945 \mathrm{~g}}{1.35 \mathrm{~g}} \times 100 \\ & =70 \% \end{aligned}$ $\begin{aligned} & 38 / 46=0.03 \\ & 945 / 45=0.021 \end{aligned}$ HCONH_{2} 0.03 moles $\begin{aligned} & =0.021 / 0.03 \times 100 \\ & =70 \% \end{aligned}$	$1 / 2$ $1 / 2$	2		$0.945 / 1.38 \times 100 \rightarrow 68.5 \%$

Mark Scheme			Worth 1 ²	Worth 0
11 (a) (i)	3-methyl butan-2-ol (with or without the hyphens) Any correct structural formula for 2-methylpentan-1-ol (Suspend General Marking Instructions 9 \& 10in case of ambiguity)	$1 \text { or } 0$		3-methyl but-2-ol Structures when connectivity is clearly wrong
(b) (i) (ii)	$4 \mathrm{BF}_{3}+3 \mathrm{NaBH}_{4} \longrightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}+3 \mathrm{NaBF}_{4}$ (Or multiples) $\begin{aligned} & -36 \mathrm{~kJ} \\ & -1274 \mathrm{~kJ} \\ & 3 \times-286=-858 \mathrm{~kJ} \end{aligned}$ $1 / 2$ mark for each correct enthalpy change plus $1 / 2$ mark for addition of 3 sensible numbers $-2168 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2) Omission of units or incorrect units $-1 / 2$ (although permit kJ)	1 2		

Mark Scheme	Worth $1 / 2$	Worth 0
(c)143444 OR -143444 OR 143000 OR -143000 OR 145000 or -145000 (1) Units not required, if incorrect units $-1 / 2$ (Accept kJ mol in place of kJ)		
or		
143 MJ (1)		
(Do not penalise rounding or for sign)		

Mark Scheme			Worth ½	Worth 0
12 (a)	To allow the potato discs/catalase to reach the pH of the buffer or To allow buffer to soak/diffuse into the potato disc or A statement to the effect- to allow the enzyme/potato to reach the same pH as the surrounding solution or To allow the enzyme/potato to acclimatise	1		To neutralise with the buffer To allow it time to react To let it mix To let it settle
(b)	hydrogen peroxide/ $/ \mathrm{H}_{2} \mathrm{O}_{2}$	1	peroxide	
(c)	The enzyme is denatured Or The enzyme changes its shape Or Enzymes work best at an optimum pH Or Too acidic for enzyme to function Or Enzyme is destroyed Or Enzyme has stopped working	1		Enzyme is inhibited Enzyme is killed

Mark Scheme		Worth $1 / 2$	Worth 0
$\begin{equation*} Q=1 \times t=5.0 \times 60 \times 32=9600 C \tag{1/22} \end{equation*}$ $1 \mathrm{~mol} \mathrm{~F}_{2}$ needs 2 moles of electrons $=\underline{2 \times 96500 \mathrm{C}}$ ($1 / 2$ for 2 F) $\begin{aligned} & 193000 \mathrm{C} \rightarrow 38 \mathrm{~g}(1 / 2 \text { for } 38 \mathrm{~g}) \\ & 9600 \mathrm{C} \rightarrow 1.89 \mathrm{~g}(1 / 2) \end{aligned}$ (no units required; deduct $1 / 2$ mark for incorrect units) Candidates who use 1 F and 19 g will get 1.89 g which should then only be awarded 1 mark			
(b) (i) exothermic or heat given out or $\Delta \mathrm{H}$ is -ve or $\Delta \mathrm{H}<0$ (ii) Graph shows as pressure increases/conc ${ }^{n} \mathrm{C}_{2} \mathrm{~F}_{4}$ decreases. Line sloping downward	1		
(c) depletion/break down etc of the ozone layer	1		Any answer including any mention of - Global warming - Acid Rain - Pollute atmosphere - Greenhouse gases

	Mark Scheme		Worth ½	Worth 0
(a) (i) (ii)	$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1 \times 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$ (Units not required, incorrect units $-1 / 2$) The marks for this question are divided into two separate marks- The first mark is awarded for the ammonia/ammonium equilibrium. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \leftrightarrows \mathrm{NH}_{4}+(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ For this equation on its own If the candidate indicates that they appreciate that the position of this equilibrium is such that the ammonium ions tend to remove OH^{-}ions from solution eg $\mathrm{NH}_{4}^{+}(\mathrm{aq}) \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ eg $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{OH}$ or suitable description in words The second mark is awarded for the water equilibrium. $\begin{equation*} \mathrm{H}_{2} \mathrm{O}(\ell) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \tag{1/2} \end{equation*}$ For this equation on its own If the candidates that they appreciate that water molecules dissociate resulting in an increased H^{+}ion concentration $\begin{equation*} \mathrm{Eg} \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \tag{1} \end{equation*}$ or suitable description in words	2	If the candidate has neither given the equations opposite, nor explained these reactions as text, they may get 1 mark for stating that Ammonium nitrate is (the salt) of a strong acid/weak base	Excess hydrogen ions (on its own)

Mark Scheme	Worth $1 / 2$	Worth 0
(b)Answers showing an appreciation that a large volume or large number of moles of gas is produced (1) OR There is an increase in the number of moles of gas OR Oxygen gas is produced which can support combustion (1) OR It is an oxidising agent (1)		Oxygen is flammable Answers given only in terms of pressure with no mention of increasing number of moles of gas

Mark Scheme			Worth 1 ²	Worth 0
$15 \quad \text { (a) } \quad \text { (i) }$	to keep the current/amps constant or to adjust the current/amps the current $(1 / 2)$ and the time $(1 / 2)$ (deduct $1 / 2$ for each additional measurement if more than two measurement suggested; ignore vol. of gas)	1		Answers mentioning voltage
(b)	Recycle/reuse the \qquad and/or $\underline{H}_{2} \underline{O}$ Or O_{2} can be sold (1) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \quad \text { or } 2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$		Releases energy ($1 / 2$)	Because the $\mathrm{H}_{2} \mathrm{SO}_{4}$ is made in step 1 Reuse products (not named)

| | Wark Scheme | Worth $1 / 2$ | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 6}$ (a) | Worth 0 | | |

[END OF MARKING INSTRUCTIONS]

