2013 Chemistry

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Chemistry Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Chemistry Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would not be treated as a cancelling error.

4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown unless the question is structured or working is specifically asked for.

5 A mark should be deducted in a calculation for each arithmetic slip unless stated otherwise in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

6 A mark should be deducted for incorrect or missing units unless stated otherwise in the marking scheme. Please note, for example, that $\mathrm{KJ} \mathrm{mol}^{-1}$ is not acceptable for $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ and a mark should be deducted.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 No mark is given for the solution of an equation which is based on a wrong principle.
Example: Use the information in the table to calculate the standard entropy change for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

Compound	$\mathbf{S}^{\mathbf{o}} / \mathbf{J ~ K}^{\mathbf{- 1}}$ mol $^{\mathbf{- 1}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	201
HCl	187
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	208

Using $\Delta \mathrm{S}^{\mathbf{o}}=\mathrm{S}^{\mathrm{o}}{ }_{\text {reactants }}-\mathrm{S}^{\mathrm{o}}{ }_{\text {products }}$ would gain zero marks.
9 No marks are given for the description of the wrong experiment.
10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.

11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.

Examples:

Would not be penalised as the structural formula for ethyl ethanoate.
If the bond is also missing, then zero marks should be awarded.

Example:

12 If a structural formula is asked for, $\mathrm{CH}_{3}-$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}$ - are acceptable as methyl and ethyl groups respectively.

13 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, no mark should be awarded if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

15 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

17 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer, '3, methyl-hexane' would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more Cl_{2}, the stronger the acid' should gain the full mark.

Example 3: Why does the (catalytic) converter have a honeycomb structure?
A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

Part Two: Marking Instructions for each Question

Section A

	Question	Acceptable Answer/s
1		C
2		B
3		A
4		D
5		D
6		A
7		C
8		A
9		C
10		B
11		C
12		C
13		D
14		B
15		A

Question		Acceptable Answer/s	
31			D
32			A
33			B
34			D
35			D
36			C
37			D
30			B
39			A
			D

Section B

	ue	Acceptable Answer	Mark	Unacceptable answer
2	a	Burning magnesium continues to burn when placed in a gas jar of carbon dioxide according to the equation. $2 \mathrm{Mg}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})$ Using the values from the table above, calculate ΔS^{0} for the reaction. $\begin{aligned} & -220.3 \mathrm{~J} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right) \text { or }-0.2203 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right) \\ & -220 \mathrm{~J} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right) \text { or }-0.220 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right) \\ & \text { or }-0.22 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right) \end{aligned}$ Max of 5 sig figs	Substance $\mathrm{Mg}(\mathrm{s})$ $\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{MgO}(\mathrm{s})$ $\mathrm{C}(\mathrm{s})$ \quad	$\mathrm{S}^{\circ} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $33 \cdot 0$ 214 $27 \cdot 0$ $5 \cdot 70$ No units $\mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ or $\mathrm{j} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ (but give candidates benefit of the doubt if unsure) negative sign missing
2	b	Using the information below and your answer to (a), calculate $\Delta \mathrm{G}^{0}$ for the burning of magnesium in carbon dioxide. $\begin{array}{ll} \mathrm{Mg}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{~s}) & \Delta \mathrm{H}^{\mathrm{o}}=-493 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array}$ Correct follow through from wrong answer in (a) can get 3 marks in (b) $\begin{aligned} \Delta H^{\mathrm{o}} & =-592\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { or }-296\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ \Delta G^{\mathrm{o}} & =\Delta H^{\mathrm{o}}-\mathrm{T} \Delta S^{\mathrm{o}} \\ & \left.=-526 \cdot 35 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right) \text { or } \mathrm{kJ}\right) \end{aligned}$ (Accept $-526\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right),-526 \cdot 4 \mathrm{~kJ} \mathrm{~mol}^{-1)} \quad 1$ (Also accept, $-263,-263 \cdot 2,-263 \cdot 18$ with correct units as final answer) Accept final answer in Joules if correct and allow 6 sig figs in this case (526350 or 526351 J)	3 (4)	$\Delta G^{0}=\Delta H^{0}+\mathrm{T} \Delta S^{0}$ or any incorrect relationship (lose 2 marks) 6 sig figs - lose 1 mark $-526 \cdot 00$ or $526 \cdot 3$

Question		Acceptable Answer	Mark	Unacceptable answer
3	c	What name is given to the enthalpy change represented by $\Delta \mathrm{H}_{(5)}$? Lattice (formation) (enthalpy) Lattice Lattice energy Crystal lattice	1	Lattice breaking
3	d	Calculate the value for enthalpy change $\Delta \mathrm{H}(5$. $-697.5 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$ Follow through from wrong answer in (b) by -value for(b) $-1046 \cdot 5$ = gives correct follow through answer.	1 (4)	+697.5

	ues	Acceptable Answer	Mark	Unacceptable answer
4	a	In a PPA the manganese content of a steel paper clip is determined by converting the manganese into purple permanganate ions, the concentration of which is measured using colorimetry. At the start of the activity, a calibration graph has to be drawn. What data must be collected to allow the calibration graph to be drawn? A series of standard solutions of different concentrations of KMnO_{4} is made up and their absorbances measured. Absorbances of permanganate solutions of known concentrations/variety of concentrations (must mention permanganate or manganate or purple solutions) Accept absorbancy/absorption/transmittance/transmission	1	Intensity of radiation/adsorption Measure absorbance of solutions of known concentration (must mention permanganate or manganate)
4	b	Which colour of filter or wavelength of light should be used in this procedure? Green or 500 to 560 nm (Accept blue-green or green-yellow) Green followed by incorrect wavelength would not be cancelling error	1	Complementary colour If wavelength given then units are required Correct wavelength followed by an incorrect colour such as red
4	c	A weighed sample of the paper clip is dissolved in $2 \mathrm{~mol} \mathrm{l}^{-1}$ nitric acid in a beaker covered with a watch glass which is placed in a fume cupboard because a toxic gas is produced. Name this toxic gas. Nitrogen dioxide/dinitrogen tetroxide/nitrogen monoxide/ nitric oxide or mixture. Correct formulae eg NO, $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$	1	Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$ Nitrogen oxide or oxides of nitrogen (on its own)

| Question | | Acceptable Answer | Mark | Unacceptable answer |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | d | Colorimetry is not used to determine potassium content
 because potassium ions are not coloured. The
 concentration of potassium ions in a compound can be
 determined using atomic absorption spectroscopy at a
 wavelength of 405 nm.
 Calculate the energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of this radiation.
 $\mathrm{E}=\frac{L h c}{\lambda}$ or $\mathrm{E}=\frac{L h c}{1000 \lambda}$
 $=296$ or 295.6 or $295 \cdot 64$ or $295 \cdot 65\left(\mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right) \mathbf{1}$ | | |

Question		Acceptable Answer	Mark	Unacceptable answer
5	a	 The absorption spectrum of a solution of sodium tetrachlorocobaltate(II) is shown above. Predict the most likely colour of the solution. Blue or green or blue/green or cyan or turquoise	(1	Red etc
5	b	Write the electronic configuration for a cobalt(II) ion in terms of s, p and d orbitals. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$ or $[\mathrm{Ne}] 3 s^{2} 3 p^{6} 3 d^{7}$ or correct answer in terms of orbital box notation with all the orbitals labelled correctly Accept $4 \mathrm{~s}^{\mathrm{o}}$ with otherwise correct answer	1	[Ar] 3d ${ }^{7}$
5	c	Write the formula for the tetrachlorocobaltate(II) ion. $\left[\mathrm{Co}(\mathrm{Cl})_{4}\right]^{2-}$ or $\left[\mathrm{CoCl}_{4}\right]^{2-}$ or $\mathrm{CoCl}_{4}{ }^{2-}$ $\mathrm{Co}(\mathrm{Cl})_{4}{ }^{2-}$ or $\left[(\mathrm{Cl})_{4} \mathrm{Co}\right]^{2-}$ Shape of brackets unimportant ${ }^{-2}$ in place of ${ }^{2-}$	1 (3)	$\left[\mathrm{Co}^{2+}\left(\mathrm{Cl}^{-}\right)_{4}\right]^{2-}$ (II) given in formula Overall charge 2+ $(\mathrm{Cl})_{4} \mathrm{Co}^{2-}$

Question		Acceptable Answer	Mark	Unacceptable answer
6 6	a	Propanoic acid is a weak acid. Sodium propanoate is a salt which can be formed from it. Both propanoic acid and sodium propanoate can be used as mould inhibitors. Calculate the pH of $0.10 \mathrm{~mol} \mathrm{l}^{-1}$ propanoic acid solution. $\begin{aligned} & \mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{a}}-1 / 2 \log \mathrm{c} \\ & =2.935 \text { or } 2.94 \text { or } 2.9 \end{aligned}$	2	Wrong relationship $=0$ marks $2 \cdot 93$
6	b	$0 \cdot 20$ moles of sodium propanoate are added to $100 \mathrm{~cm}^{3}$ of the $0 \cdot 10 \mathrm{~mol} \mathrm{l}^{-1}$ solution of propanoic acid. Calculate the pH of the buffer solution formed. $\begin{aligned} & \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\text { [acid }]}{[\text { salt }]} \\ & =6 \cdot 171 \text { or } 6 \cdot 17 \text { or } 6 \cdot 2 \end{aligned}$	2 (4)	Wrong relationship = 0 marks

Question		Acceptable Answer	Mark	Unacceptable answer	
7	a	Calculate the emf of a $\mathrm{Cr}(\mathrm{s})\left\|\mathrm{Cr}^{3+}(\mathrm{aq}) \\| \mathrm{Fe}^{2+}(\mathrm{aq})\right\| \mathrm{Fe}(\mathrm{s})$ cell operating under standard conditions. $\text { Emf }=0.74-0.44=0.30 \mathrm{~V} \text { or } 0.3 \mathrm{~V}$	1	$\begin{aligned} & \text { No units } \\ & -0.3 \mathrm{~V} \end{aligned}$	
7	b	Calculate the free energy change, $\Delta \mathrm{G}^{\mathrm{o}}$, in kJ per mole of chromium, for this cell reaction. $\text { (Accept } \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{n} \mathrm{Fe} \text { for } 1 \text { mark unless candidate goes on }$ to substitute charge on an electron for e)	3	$\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{nFE}^{\text {o }}$ (deduct 1 mark)	

Question		Acceptable Answer	Mark	Unacceptable answer
7	c	Use the Ellingham diagram below to explain whether zinc or aluminium should be chosen to extract chromium from chromium oxide.		
7	c	Aluminium because $\Sigma \Delta \mathrm{G}^{0}$ is negative for the reactions $\begin{aligned} 2 / 3 \mathrm{Cr}_{2} \mathrm{O}_{3} & \rightarrow 4 / 3 \mathrm{Cr}+\mathrm{O}_{2} \\ +4 / 3 \mathrm{Al}+\mathrm{O}_{2} & \rightarrow 2 / 3 \mathrm{Al}_{2} \mathrm{O}_{3} \end{aligned}$ or Overall $\Delta \mathrm{G}^{\mathrm{o}}$ is negative for the (redox) reaction: $2 / 3 \mathrm{Cr}_{2} \mathrm{O}_{3}+4 / 3 \mathrm{Al} \rightarrow 4 / 3 \mathrm{Cr}+2 / 3 \mathrm{Al}_{2} \mathrm{O}_{3}$ Correct answer in terms of overall free energy change for the reaction	1 (5)	Aluminium is more reactive than chromium. Aluminium is above chromium in the ecs. "the lower one always extracts the higher one" "lower graph stays as written and higher graph is reversed." "anti-clockwise rule" applies in Ellingham diagram.?

Question			Acceptable Answer	Mark	Unacceptable answer
8	c		Calculate a value for the rate constant, k , including the appropriate units. $\mathrm{k}=\text { Rate } /\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]=0 \cdot 15 / 8 \cdot 0 \times 10^{-4}=187 \cdot 5 \mathrm{~s}^{-1}$ 1 mark for correct units. Accept 188 and $190 \mathrm{~s}^{-1}$ (Don't penalise for K in place of k) Units must follow on from relationship used in (a) and/or (b) $\mathrm{s}^{-1}=1 \text { mark no matter answer given to (a) or (b) }$ Correct follow through from (a) or (b)	2	Any wrong units, deduct 1 mark even if already lost 2 marks for units previously - except if correct due to follow through.
		i	There are four structural isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$. From the above results, which isomer is most likely to have been used? 2-bromomethylpropane or 2-bromo-2-methylpropane Accept 2-methyl-2-bromopropane (ignore dashes and commas) Any correct structural formula would be acceptable Accept "the tertiary isomer"/the tertiary one/tertiary structure	1	Cancelling errors apply if correct structure and wrong name or vice-versa but accept "methy" as a slip if the structure is correct But if only the name is given then do not accept errors such as "brom" or "methy" 2-methylbromopropane
8	d	ii	Explain your answer to (d)(i). Correct explanation in terms of Stability of carbocation or Steric hindrance	1 (6)	

Question		Acceptable Answer	Mark	Unacceptable answer
9	a	Nickel(II) ions react quantitatively with dimethylglyoxime $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2}\right)$ forming a complex which precipitates out as a red solid. The equation for the reaction and the structure of the complex are shown below. $\mathrm{Ni}^{2+}+2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{2}\right)_{2}+2 \mathrm{H}^{+}$ Relative formula mass $=288.7$ What is the coordination number of nickel in the complex? 4 or four or iv or IV	1	
9	b	When 0.968 g of an impure sample of nickel(II) sulphate, $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, was dissolved in water and reacted with dimethylglyoxime, 0.942 g of the red precipitate was formed. Calculate the percentage, by mass, of nickel in the impure sample of nickel(II) sulphate. Mass of nickel in DMG complex $=0.942 \times(58.7 / 288.7)=0.1915 \mathrm{~g} \text { or } 0.192 \mathrm{~g}$ $\% \mathrm{Ni}$ in impure salt $=(0.1915 / 0 \cdot 968) \times 100=19.8(\%) \mathbf{1}$ (Accept 19.79% and 19.786% and 19.835% or 19.83%) (Deduct 1 mark per error up to a maximum of 2 marks) (19.73 = 1 mark only - rounded $0 \cdot 1915$ to $0 \cdot 191$)	2 (3)	$20.9 \%(\% \mathrm{Ni}$ in pure salt) 20.3% use of 0.968 instead of 0.942 in first line Use of AN in place of RAM (0)

Question		Acceptable Answer	Mark	Unacceptable answer
10	a	A student devised the following reaction sequence. What type of reaction is taking place in step (1)? Electrophilic substitution or Alkylation	(aq) $\rightarrow x$ thanol	Nucleophilic substitution substitution Electrophilic Friedel - Crafts
10	b	What experimental condition would be required in step step (2)? Light/UV radiation/radiation of correct wavelength/UV/ visible light/camera flash	1	Electromagnetic radiation

Question			Acceptable Answer	Mark	Unacceptable answer
11	a		Methylamphetamine (also known as "speed") and caffeine are stimulants. A "designer drug" with a structure related to methylamphetamine is ecstasy. Ecstasy tablets are sometimes contaminated with a substance called 4-MTA. Methylamphetamine ecstasy caffeine 4-MTA Caffeine contains more than one "amide" functional group. Draw the structure of caffeine and circle one of the "amide" functional groups. Allow minor slip in the structure of caffeine Caffeine Any one of the three amide functional group shown Not necessary for CH_{3} to be included in the circle but there must be a bond coming from the N and part of that bond must be within the circle		

| Question | | Acceptable Answer | | Mark | Unacceptable answer |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1}$ | \mathbf{b} | | Which of the four molecules contains a primary amine
 functional group?
 4-MTA | | |
| $\mathbf{1 1}$ | c | | Draw the structure of the pharmacaphore common to
 methylamphetamine, ecstasy and 4-MTA. | | |

Question			Acceptable Answer	Mark	Unacceptable answer
12 12	a		In a PPA, cyclohexene is prepared from cyclohexanol using a dehydrating agent. Which dehydrating agent is used in the PPA? (Concentrated) phosphoric acid/orthophosphoric acid	1	
12	b	i	When the reactants have been heated gently for about 15 to 20 minutes, the mixture is allowed to cool. Separation of the product is carried out by adding saturated sodium chloride solution to the reaction mixture and vigorously shaking them together for about a minute allowing them to settle and form two layers. Why is saturated sodium chloride solution used rather than water? It is denser than water. The layers separate more quickly. The layers separate better. The layers settle more quickly. The aqueous solution is more polar (than water) To get a better separation	1	It works better Get a better yield
12	b	ii	Which piece of apparatus is used in this part of the procedure? Separating funnel/separatory funnel/separation funnel	1	Diagram

| Question | | Acceptable Answer | Mark | Unacceptable answer |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | | $\begin{array}{l}\text { The identity of the product can be verified by using infra- } \\ \text { red spectroscopy. } \\ \text { Predict one difference that would be observed between the } \\ \text { infra-red spectra of cyclohexene and cyclohexanol. } \\ \text { Presence of: } \\ \text { C=C stretch or peak or absorbance/1620 to } 1680 \mathrm{~cm}^{-1} \text { in } \\ \text { cyclohexene. } \\ \text { C-H stretch or peak or absorbance/3095 to } 3010 \mathrm{~cm}^{-1} \text { in } \\ \text { cyclohexene. } \\ \text { O-H stretch/3200 to } 3650 \mathrm{~cm}{ }^{-1} \text { in cyclohexanol. }\end{array}$ | 1 | $\begin{array}{l}\text { Units must be given with } \\ \text { values except for those who } \\ \text { have already been penalised } \\ \text { twice for wrong/incorrect/ } \\ \text { missing units }\end{array}$ |
| Accept the absence of these in the other compound. | | | | |$]$

	ues	Acceptable Answer	Mark	Unacceptable answer
13	a	The diagram below shows a reaction sequence starting from compound \mathbf{A} which is pentan-2-ol $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$. Compound \mathbf{B} can exist as two geometric isomers. Compound \mathbf{C} is pent-1-ene. Compound \mathbf{D} is the oxidation product of compound \mathbf{A}. Name and draw the structural formulae for the two geometric isomers of compound \mathbf{B}. cis-pent-2-ene trans-pent-2-ene Two correct structures, no names $=1$ Two correct names, no structures $=1$ Don't penalise for bonds at 90° rather than 120° and accept CH_{3} in place of $\mathrm{H}_{3} \mathrm{C}$	2	One only given but with correct structure and wrong name $=0$ Both structures correct but names wrong way round $=1$ out of 2 Only one structure given but with wrong name (0)

Question			Acceptable Answer	Mark	Unacceptable answer
13	b		Name compound D. Pentan-2-one.	1	Pent-2-one Penta-2-one
13 13		i	Compound \mathbf{E} is a cyanohydrin. Name the type of reaction occurring when \mathbf{D} is converted into E. (nucleophilic) addition.	1	Electrophilic addition
13	c	ii	Draw a structural formula for compound \mathbf{E}. or shortened SF with CN and $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ but not with $\mathrm{C}_{3} \mathrm{H}_{7}$ (Accept correct follow through from incorrect answer to (b)	1	
13	d		Name or draw a structural formula for compound \mathbf{F}. 2-hydroxy-2-methylpentanoic acid or Accept COOH or $\mathrm{CO}_{2} \mathrm{H}$ and $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ but not $\mathrm{C}_{3} \mathrm{H}_{7}$ nor $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{CH}_{3}$ (Accept correct follow through from incorrect answer to (c)	1 (6)	

	ues	Acceptable Answer	Mark	Unacceptable answer
14 14	a	5.00 g of an organic compound \mathbf{A} was burned completely producing 11.89 g of CO_{2} and 6.08 g of $\mathrm{H}_{2} \mathrm{O}$ as the only products. Using the information above, calculate the empirical formula for compound \mathbf{A}.	3	Correct answer, no working = 1 mark
14	b	The infra-red spectrum of compound \mathbf{A} is shown below. Which bond is responsible for the peak at $1140 \mathrm{~cm}^{-1}$? C-O (stretch)	1	

