2012 Chemistry

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Chemistry Advanced Higher

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would not be treated as a cancelling error.

4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown unless the question is structured or working is specifically asked for.

5 A mark should be deducted in a calculation for each arithmetic slip unless stated otherwise in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

6 A mark should be deducted for incorrect or missing units unless stated otherwise in the marking scheme. Please note, for example, that $\mathrm{KJ} \mathrm{mol}^{-1}$ is not acceptable for kJ mol^{-1} and a mark should be deducted.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 No mark is given for the solution of an equation which is based on a wrong principle.
Example:Use the information in the table to calculate the standard entropy change for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

Compound	So/J K ${ }^{\mathbf{- 1}}$ mol $^{-\mathbf{1}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	201
HCl	187
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	208

Using $\Delta \mathrm{S}^{\circ}=\mathrm{S}^{\circ}{ }^{\text {reactants }}-\mathrm{S}{ }^{\circ}$ products would gain zero marks.

9 No marks are given for the description of the wrong experiment.
10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.

11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.

Examples:

Would not be penalised as the structural formula for ethyl ethanoate.
If the bond is also missing, then zero marks should be awarded.

Example:

12 If a structural formula is asked for, $\mathrm{CH}_{3}-$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ are acceptable as methyl and ethyl groups respectively.

13 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, no mark should be awarded if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

15 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

17 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1:The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer, '3, methyl-hexane' would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more Cl_{2}, the stronger the acid' should gain the full mark.

Example 3:Why does the (catalytic) converter have a honeycomb structure?
A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

2012 Chemistry Advanced Higher
Marking scheme

Section A

1.	A	21.	C
2.	D	22.	C
3.	D	23.	B
4.	A	24.	D
5.	B	25.	B
6.	B	26.	A
7.	D	27.	C
8.	C	28.	D
9.	C	29.	A

10. A
11. B
12. C
13. D
14. D
15. B
16.
17. A
$35 . \quad B$
18. A
19. B
20. A

A
37.

D
18.

C
38.

A
19.

C
39.

D
20.

D
40.

D

Section B (Penalise only up to a maximum of 2 marks for wrong/missing units and penalise up to a maximum of 2 marks for sig figs but only penalise once per question)

Question	Acceptable Answer	Mark	Unacceptable Answer
1 (a) (i)	$\begin{aligned} & \mathrm{E}=\frac{L h c}{\lambda} \\ & =\frac{\left(6.02 \times 10^{23}\right) \times\left(6.63 \times 10^{-34}\right) \times\left(3.00 \times 10^{8}\right)}{1000 \times 405 \times 10^{-9}} \\ & =296(\mathrm{~kJ} \mathrm{~mol} \\ & \text { Accept } 295.6 \text { to } 296 \\ & \text { (max } 5 \text { sig figs) } \\ & \text { Correct answer only gets } 2 \text { marks, but if outwith above range } \\ & \text { then } 0 \text { marks } \\ & \text { If } L \text { omitted, } E=4.91 \times 10^{-22}(1 \text { mark only }) \\ & \text { Units not required but if wrong units given, then deduct } 1 \text { mark } \end{aligned}$	1	If use $L=6 \times 10^{23}$ then get $E=294.67$ (deduct this mark so get 1 mark out of 2) 4.91×10^{-19} (missing out L and 1000) 0 marks out of 2
(ii)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{0}$ Accept numbers on line or subscripts but must read correctly Accept capitals $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$ with or without any brackets Correct orbital box notation	1	$[\mathrm{Ar}] 3 \mathrm{~d}^{10}$
(b)	Photovoltaic effect / photoconductive Incorrect spelling - markers discretion but must be almost right (photo and volt minimum)	1	Photoelectric, PV
(c)	Positive holes, +ve hole(s)	1	Electrons / Holes
(5)			

Question	Acceptable Answer	Mark	Unacceptable Answer
3 (a)	The relative radii of the ions. The relative size of the ions. The radius ratio of the ions. Relative ionic radii of the elements Size of ionic radii in relation to each other Upside down ratio acceptable ($\mathrm{r}+\mathrm{ve} / \mathrm{r}$-ve or $\mathrm{r}-\mathrm{ve} / \mathrm{r}+\mathrm{ve}$)	1	The radius of the ions Relative ionic radii of the atoms Mention of covalent radii Size difference Size comparison Closeness of packing
(b)	Each sodium ion has six chloride ions surrounding it and each chloride ion has six sodium ions surrounding it. Each sodium ion / +ve ion has six chloride ions / -ve ions surrounding it and vice-versa Symbols instead of names would be fine, eg, Na ion	1	Each sodium ion has six chloride ions surrounding it Mention of atoms instead of ions (unless already penalised in part (a) Answers such as one sodium bonded to 6 chlorides or attached or bound or similar. However attracted to would be acceptable Na^{-}and Cl^{+} Chlorine ion unless chloride also stated somewhere in the answer.
(c)	Potassium fluoride, accept fluoride on its own, $\mathrm{KF}, \mathrm{K}^{+} \mathrm{F}^{-}, \mathrm{F}^{-}$	1	Wrong formula, flouride, fluride, wrong charges, fluorine, $\mathrm{F}_{2}, \mathrm{~F}, \mathrm{KF}_{2}$
(d) (i)	Lattice enthalpy and hydration / solvation enthalpies/enthalpy / energies (of the ions). Ignore 'making' or 'formation'	1	
(ii)	The entropy change is positive/positive entropy/increase in entropy/increase in disorder / Δ S positive	1	Entropy/entropy change/high entropy $\Delta \mathrm{G}^{\circ}$ negative on its own but not a cancelling error, but if $\Delta G^{\circ}=0$ then it will be a cancelling error.
		(5)	

Question	Acceptable Answer	Mark	Unacceptable Answer
$\mathbf{4}$ (a)	Trigonal (planar) / correctly drawn structure	$\mathbf{1}$	Triangular
(b)	Oxygen donates/provides a (free/lone) pair of electrons (to boron) or correct idea that both electrons have come from the oxygen - must state that electrons come from the oxygen	$\mathbf{1}$	Oxygen donates electrons to boron Boron donates the electrons Oxygen acts as a ligand General statement about dative covalent bond formation Positive boron - can be a cancelling error
(c)	Cyclic ethers or ether(s) or furans or cycloethers, hydrofuran lgnore spaces, dashes, commas	$\mathbf{1}$	Aromatic ether

Question	Acceptable Answer	Mark	Unacceptable Answer
5 (a)	No of moles thiosulphate $15.25 \times 0.102 / 1000$ $=1.56 \times 10^{-3}$ so moles $\mathrm{Cu}^{2+}=1.56 \times 10^{-3}$ Mass Cu per sample $=63.5 \times 1.56 \times 10^{-3}=9.88 \times 10^{-2}$ Mass of Cu in key $=9.88 \times 10^{-2} \times 1000 / 25=3.95 \mathrm{~g}$ (Accept 3.96 g) Deduct 1 mark per error (multiply first answer by 2540 for FT for 2 marks)	1 1 1	4 g (2 out of 3 marks) 3.87 g or 3.88 g (2 out of 3 marks - used 0.1 instead of 0.102) 4.015 g (2 out of 3 marks - averaging all three titres) 7.88 g or 7.9 g worth 2 out of 3 (wrong ratio) Deduct 1 mark if wrong or missing units
(b)	Use distilled/ deionised water. Rinsings. (Start with different samples from the key and) carry out replicates / duplicates. Cover beaker with watch glass when key is being dissolved Increase sample size for titration	1	More titrations / More samples Measure the 10 g of KI accurately Use a more accurate balance
(c)	EDTA complexes with Cu (and Ni) Other interfering metal ions EDTA complexing with something else/impurities Error in EDTA concentration	1	Impurities on its own Mechanical losses/mass transfer losses EDTA solution too concentrated Any answer relating to poor experimental technique
		(5)	

Question	Acceptable Answer	Mark	Unacceptable Answer
$\mathbf{6}$ (a)	Separating funnel/separation funnel/separatory funnel	$\mathbf{1}$	Unlabelled diagram Hirsch or Buchner or dropping funnel Separating flask/tube
(b)	Accept $0 \cdot 127-0 \cdot 130 / 0 \cdot 13$	$\mathbf{1}$	Reciprocal of correct answer gives 7•7
(c)	Different temperature List of possible answers including different temperature One of the solutions may be saturated System hadn't reached equilibrium (before separation)	$\mathbf{1}$	Chemicals have "gone off' Solvent evaporated - on its own
(d)	Ethanol and water are miscible Ethanol soluble in water Two layers won't be formed	$\mathbf{1}$	Ester formation Ethanol reacts with water on its own is not acceptable but not a cancelling error

Question	Acceptable Answer	Mark	Unacceptable Answer
7 (a)		1 1	Wrong relationship $=$ wrong principle $=0$ marks Deduct 1 mark for missing units in final answer (or wrong units - look out for mol^{-1}, deduct 1 mark)
(b)	Because of the (dark) colour of vinegar or words to that effect, eg the colour change would be hard to see	1	
(c)	$\mathrm{CH}_{3} \mathrm{COO}$ or correct structural formula or $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ Superscripted numbers - accept as slip, except if before the charge states (aq) acceptable	1	
		(4)	

Question	Acceptable Answer	Mark	Unacceptable Answer
8 (a)	```"Temperatures below 2000 K" or 0-2000 K 500-2000 K no other range other than 0 or \(500-2000 \mathrm{~K}\)```	1	2000 K or temperatures above 2000 K Temps below $20000^{\circ} \mathrm{K}$ Any single temperature
(b)	Slope of line is- $\Delta \mathrm{S}$ or $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$ has increase in entropy or or 1 mole gas makes two moles gas or increase in disorder or ΔS is positive	1	Decrease in entropy As temperature increases, feasibility increases Answer in terms of feasibility only but acceptable to have a correct answer followed by mention of feasibility Exothermic reaction so favoured by lower temperature
(c)	Boiling point of Mg/Change of state/magnesium becomes a gas	1	Melting point of Mg
		(3)	

Question	Acceptable Answer	Mark	Unacceptable Answer
$\mathbf{1 0}$ (a)	Zero or 0	$\mathbf{1}$	'No' order
(b)	First or 1	$\mathbf{1}$	
(c)	s Adding (a) and (b) to get 2nd order gives $I \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Adding (a) and (b) to get 3rd order gives $\mathrm{I}^{2} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Adding (a) and (b) to get 4th order gives $\mathrm{I}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ In any order	$\mathbf{1}$	

Question	Acceptable Answer	Mark	Unacceptable Answer
11 (a) (i)	Hydrogen or H_{2}	1	H on its Own
(ii)	Hydrogen chloride or HCl or hydrochloric acid	1	Chlorine/name of any other gas
(b) (i)	acid chloride, carboxylic acid chloride / acyl chloride	1	Chloride Aryl chloride / alkanoic acid chloride / unsaturated acid chloride
(ii)		1	"Benzene ring" without delocalised electrons or alternate double/single bonds
(iii)	Faster reaction/ More vigorous reaction/ greater yield/needs no catalyst/ HCl produced instead of $\mathrm{H}_{2} \mathrm{O}$ then no $\mathrm{H}_{2} \mathrm{O}$ to hydrolyse the ester back into reactants/no equilibrium reached (in an open system)/produces HCl which can be sold as a by-product/lower temperature/reacts more readily	1	'Water not produced' / 'HCl is produced' on its own
		(5)	

Question	Acceptable Answer	Mark	Unacceptable Answer
$\mathbf{1 2}$ (a)	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~S}_{2} \mathrm{O}_{2}$ (acceptable in any order).	$\mathbf{1}$	
(b) $\mathbf{\text { (i) }}$	The carbon atom where the tail joins the ring. Structure may be slightly wrong or only part-drawn but correct carbon must be circled	$\mathbf{1}$	
(ii)	It has four different atoms or groups (things/substituents) attached to it. It is a chiral centre/it is asymmetric The "tail" and hydrogen atom attached to that carbon atom can each be in front of or behind the plane of the ring. Chiral (carbon)	$\mathbf{1}$	4 different molecules...... 4 different functional groups

Question	Acceptable Answer	Mark	Unacceptable Answer
13 (a)	To prevent evaporation or idea of products or reactant or gases or chemicals escaping To reduce smell. Ethyl benzoate/ethanol / it is flammable/combustible/inflammable	1	To get a higher \% yield (not cancelling)
(b)	(Alkaline) hydrolysis/hydrolysing	1	Acid hydrolysis.
(c)	A few glass beads or anti-bumping granules.	1	
(d)	The oily layer disappears/no longer two layers/goes clear/lack of film/no more oily droplets/cloudy to colourless	1	Colour change
(e)	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}(150 \mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(122 \mathrm{~g}) \\ & 5.64 \mathrm{~g} \rightarrow 4.59 \mathrm{~g} \\ & 73.2 \% \text { of } 4.59 \mathrm{~g}=\mathbf{3 . 3 6} \mathrm{g} \\ & \mathrm{Or} \\ & \text { Using mol calculation, then get } 0.0275 \mathrm{~mol}(1) \\ & \text { Final answer }=3.36 \mathrm{~g} \text { (as before) } \\ & \text { Units required } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Final answer $=4.13 \mathrm{~g}(0)-$ have taken 73.2% of 5.64
		(6)	

Question	Acceptable Answer	Mark	Unacceptable Answer
14 (a) (i)	Electrophilic substitution.	1	Nucleophilic substitution/substitution
(ii)	Aminobenzene/Phenylamine/Aniline or correct (structural) formula / $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	1	Molecular formula
(b) (i)		1	$\mathrm{SO}_{3} \mathrm{H}$ attached to benzene ring $\mathrm{C}_{6} \mathrm{H}_{5}$ in place of benzene ring
(ii)	${ }_{0}^{0}{ }_{0}^{\circ}{ }_{0}^{\circ} 0_{0}^{\circ} 0_{0}^{0} 0_{0}^{0}$ Accept all open or filled circles or x for electrons. Ignore partial charges. 24 electrons, 8 per atom	1	Lone pair on sulphur
		(4)	

Question	Acceptable Answer	Mark	Unacceptable Answer
15 (a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}$ or	1	1-chlorobutane or any other isomer
(b)	Allow correct follow through from 1-chlorobutane in (a) Charge not required but negative charge acceptable in correct position Two dotted lines required in correct position Wedge not required	1	OH-- Positive charge Negative charge on wrong position

Question	Acceptable Answer	Mark	Unacceptable Answer
(c)	 Accept positions of 4.5-6.0 and 1.6-2.6 Height 3:1 TMS line optional Labels not required but scale needed on x-axis (1 mark for 2 lines only any position, any relative heights) Backwards scale No FT from (a)	1 for positions 1 for heights	Wrong number of lines = 0

[END OF MARKING INSTRUCTIONS]

