2011 Chemistry

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2011

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Chemistry Advanced Higher

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would not be treated as a cancelling error.

4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown unless the question is structured or working is specifically asked for.

5 A mark should be deducted in a calculation for each arithmetic slip unless stated otherwise in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

6 A mark should be deducted for incorrect or missing units unless stated otherwise in the marking scheme. Please note, for example, that $\mathrm{KJ} \mathrm{mol}^{-1}$ is not acceptable for $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ and a mark should be deducted.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 No mark is given for the solution of an equation which is based on a wrong principle.
Example: Use the information in the table to calculate the standard entropy change for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

Compound	$\mathbf{S}^{\mathbf{o}} / \mathbf{J ~ K}^{\mathbf{- 1}} \mathbf{m o l}^{\mathbf{- 1}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	201
HCl	187
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	208

Using $\Delta \mathrm{S}^{\mathbf{o}}=\mathrm{S}^{\mathbf{o}}$ reactants $-\mathrm{S}^{\mathbf{o}}$ products would gain zero marks.

9 No marks are given for the description of the wrong experiment.
10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.

11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.

Examples:

Would not be penalised as the structural formula for ethyl ethanoate.
If the bond is also missing, then zero marks should be awarded.

Example:

12 If a structural formula is asked for, $\mathrm{CH}_{3}-$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ are acceptable as methyl and ethyl groups respectively.

13 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, no mark should be awarded if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

15 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

17 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer, '3, methyl-hexane' would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more Cl_{2}, the stronger the acid' should gain the full mark.

Example 3: Why does the (catalytic) converter have a honeycomb structure?
A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

2011 Chemistry Advanced Higher

Marking scheme

Section A

1.	A	21.	B
2.	B	22.	A

3.

A
23
D

4
5.

C
25.

D
6.

C
26.

C
7.

A
27.

A
8.

D
28.

C
9.

C
29.

A
10.
11.

B
31.

A
12.

C
32.

B

13
A
33.

D

14
C
34.

B
15.

C
35.

D
16.

D
36.

B

17
B
37.

C

18
B
38.

A
19.

A
39.

D
20.

D
40.

D

Marking Instructions

Chemistry Advanced Higher

Section B

Question		Acceptable Answer	Mark	
$\mathbf{1}$ (a)	Superconductivity Superconducting Superconductors Superconductance	$\mathbf{1}$	Semiconductors	
(b)				

Question	Acceptable Answer	Mark	Unacceptable Answer
2 (a)	The line at $4.6 \times 10^{14} \mathrm{~Hz}$	1	
(b) (i)	$\begin{aligned} & \mathrm{H}(\mathrm{~g}) \rightarrow \mathrm{H}^{+}(\mathrm{g})+\mathrm{e}^{-} \\ & \mathrm{H}(\mathrm{~g})-\mathrm{e}^{-} \rightarrow \mathrm{H}^{+}(\mathrm{g}) \end{aligned}$	1	
(b) (ii)	$\begin{aligned} & \begin{aligned} \mathrm{E}=\frac{\text { Lhc }}{\lambda} \text { or } \mathrm{E} & =\frac{\text { Lhc }}{1000 \lambda} \\ \text { Wavelength, } \lambda & =\frac{6 \cdot 02 \times 10^{23} \times 6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{1311000} \\ & =91.3 \times 10^{-9} \mathrm{~m} \text { or } 91.3 \mathrm{~nm} \text { or } 9.13 \times 10^{-8} \mathrm{~m} \\ & 91 \mathrm{~nm} \end{aligned} \end{aligned}$	1 1 1	

Question	Acceptable Answer	Mark	Unacceptable Answer
$6 \quad$ (a)	$\mathrm{T}=300 \mathrm{~K} \rightarrow 310 \mathrm{~K}$	1	$300{ }^{\circ} \mathrm{K} 300{ }^{\circ} \mathrm{C}$
(b)	$\Delta H^{\circ}=(+) 380 \rightarrow 420\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	1	-400
(c)	$\begin{aligned} & \text { Gradient of line }=-1 \cdot 3\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \text { or } \\ & \Delta \mathrm{S}^{\mathrm{o}}=1.22 \text { to } 1.40 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	1	
	$\Delta \mathrm{S}^{\circ}=(+) 1220$ to $1400\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$	1	
		(4)	

Question	Acceptable Answer	Mark	Unacceptable Answer
$7 \quad$ (a)	Third order $/ 3^{\text {rd }} / 3$	1	
(b)	Reaction 3 Rate is independent of concentration of reactants Or rate is independent of concentration of ammonia Concentration of reactant has no effect on rate	1	
(c)	$\begin{aligned} & \mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}=\frac{1.43 \times 10^{-6}}{(0.250)^{2}(0.250)} \\ & =\mathbf{9 . 1 5} \times \mathbf{1 0}^{-5} \mathbf{1}^{\mathbf{2}} \mathbf{~ m o l}^{-2} \mathbf{s}^{-1} \end{aligned}$ (1 mark for correct value, $\mathbf{1}$ mark for correct units)	2	
		(4)	

Question	Acceptable Answer	Mark	Unacceptable Answer
9 (a)	A solution in which the pH remains (approximately) constant when small amounts of acid, alkali or water are added Resists p H changes when acid/alkali added	1	
(b)	Sodium propanoate or potassium propanoate	1	
(c)	$\begin{aligned} & {[\text { salt }]=\frac{0 \cdot 15 / 80 \cdot 0}{0 \cdot 1}=0 \cdot 131 \mathrm{~mol} \mathrm{l}^{-1}} \\ & \mathrm{pH}=14-4.76+\log \frac{0 \cdot 15}{0 \cdot 131} \\ & \mathrm{pH}=14-4.76+0 \cdot 059=\mathbf{9 . 3 0} \end{aligned}$	1 1 1	

| Question | Acceptable Answer | Mark | Unacceptable Answer |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1 0}$ (a) | Pharmacaphore | | |
| (b) | | | |

Question	Acceptable Answer	Mark	Unacceptable Answer
12 (a)	Condensation	1	elimination
(b)	or Accept either cis/trans isomer	1	
(c) (i)		1	
(ii)	Crystallisation/recrystallisation	1	
(iii)	Measure melting point and compare to known data/value	1	Measure melting point (on its own)
(iv)	Accept yellow/orange/gold	1	
(6)			

Page 17

Question	Acceptable Answer	Mark	Unacceptable Answer
$13 \quad$ (a) (i)	Nucleophilic substitution/replacement by a nucleophile First order unimolecular	1 1	
(ii)			
(b) (i)	Na in ethanol	1	
(ii)	Methoxyethane Accept methyl ethyl ether or ethylmethylether	1	
		(5)	

Question	Acceptable Answer	Mark	Unacceptable Answer
14 (a)	2-hydroxypropanoic acid (spelling must be correct)	1	
(b)	Carbon atom (2) because it has 4 different groups attached	1	Carbon atom (2) with no explanation
(c) (i)	KCN or NaCN or HCN or any cyanide compound that would work or correct names	1	
(ii)	Hydrolysis/acid hydrolysis	1	
(iii)	 or $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{NH}_{2}$	1	

[END OF MARKING INSTRUCTIONS]

