2010 Chemistry

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Advanced Higher Chemistry

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would not be treated as a cancelling error.

4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown unless the question is structured or working is specifically asked for.

5 A mark should be deducted in a calculation for each arithmetic slip unless stated otherwise in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

6 A mark should be deducted for incorrect or missing units unless stated otherwise in the marking scheme. Please note, for example, that $\mathrm{KJ} \mathrm{mol}^{-1}$ is not acceptable for $\mathrm{kJ} \mathrm{mol}^{-1}$ and a mark should be deducted.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 No mark is given for the solution of an equation which is based on a wrong principle.
Example: Use the information in the table to calculate the standard entropy change for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

Compound	$\mathbf{S}^{\mathbf{o} / \mathbf{J ~ K}}{ }^{\mathbf{- 1}} \mathbf{m o l}^{\mathbf{- 1}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	201
HCl	187
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	208

Using $\Delta \mathrm{S}^{\mathrm{o}}=\mathrm{S}^{\mathrm{o}}{ }_{\text {reactants }}-\mathrm{S}^{\mathrm{o}}{ }_{\text {products }}$ would gain zero marks.

9 No marks are given for the description of the wrong experiment.
10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.

11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.

Examples:

Would not be penalised as the structural formula for ethyl ethanoate.
If the bond is also missing, then zero marks should be awarded.

Example:

12 If a structural formula is asked for, $\mathrm{CH}_{3}-$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}$ - are acceptable as methyl and ethyl groups respectively.

13 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, no mark should be awarded if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

15 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

17 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer, '3, methyl-hexane' would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	$1 \cdot 65$
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	$1 \cdot 27$
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more Cl_{2}, the stronger the acid' should gain the full mark.

Example 3: Why does the (catalytic) converter have a honeycomb structure?
A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

2010 Chemistry Advanced Higher

Marking scheme

Section A

1.	D	21.	D
2.	C	22.	C
3.	D	23.	C
4.	B	24.	A
5.	B	25.	C
6.	D	26.	D
7.	A	27.	C
8.	B	28.	B
9.	D	29.	A

10. C
11. C
12. $\mathrm{A} \quad 32 . \quad \mathrm{B}$
13. B
14. A
15. A
16. B
17. D
18. A
19. A
20. D
21. B
22. C
23. C
24. A
25.

D
40.
C

Section B

Question	Acceptable Answer	Mark	Unacceptable Answer
1 (a)	$\begin{aligned} & \mathrm{E}=\frac{\text { Lhc }}{\lambda} \text { or } \mathrm{E}=\frac{\text { Lhc }}{1000 \lambda} \\ & \mathrm{E}=\frac{6.02 \times 10^{23} \times 6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{160 \times 10^{-9}} \\ & \mathrm{E}=748\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { or } 748361 \mathrm{~J} \end{aligned}$ If L is omitted, answer is $1.24 \times 10^{21} \mathrm{~kJ}$ If L is taken as 6×10^{23}, answer is 746 kJ OR 745875 J	1 1	
(b) (i)	5 or 2 bonding and 3 non-bonding	1	3 bonding and 2 non-bonding
(ii)	trigonal bipyramidal or Follow through from wrong answer in b (i)	1	trigonal dipyramidal

Question	Acceptable Answer	Mark	Unacceptable Answer
2 (a)	+3 or III or 3	1	-3
(b)	tetraaquadichlorochromium(III)	1	
(c)	$[\underbrace{}_{\text {clen }}$	1	

Question	Acceptable Answer	Mark	Unacceptable Answer
$3 \quad$ (a)	$\Delta \mathrm{H}^{\circ}=(-1676)-(-824)=-852 \mathrm{~kJ}$	1	
(b)	$\Delta \mathrm{S}^{\text {o }}=[2(27)+51]-[2(28)+87]=-\mathbf{3 8} \mathbf{~ J K}^{\mathbf{- 1}}$	1	
(c)	$\begin{aligned} \Delta \mathrm{G}^{\mathrm{o}} & =\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{o}}=(-852)-298(-38 / 1000) \\ & =-852+11.32=\mathbf{- 8 4 1} \mathbf{k J} . \end{aligned}$	1	

Question	Acceptable Answer	Mark	Unacceptable Answer
$5 \quad$ (a)		1	Original rotated by 90° or 180°
(b)	$\mathrm{b}=0$	1	
	$\mathrm{c}=-1$ and $\mathrm{d}=-1$	1	

Question	Acceptable Answer	Mark	Unacceptable Answer
$6 \quad$ (a) (i)	colourless to pink/colourless to purple	1	clear to pink/purple
(ii)	$(16.5 / 1000) \times 0.02 \times 5 / 2=\mathbf{0 . 0 0 0 8 2 5}$ moles $\left(8.25 \times 10^{-4}\right)$	1	
(iii)	$0.000825 \times(1000 / 20) \times 88=3.63 \mathbf{g}$	1	$3 \cdot 63$ (Units must be shown)
(iv)	$4.49-3.63-0.06=\mathbf{0 . 8} \mathbf{g}$	1	$0 \cdot 8$ (Units must be shown)
(b)	$\left.\begin{array}{ccc} \mathrm{K} & \mathrm{H} & \mathrm{C}_{2} \mathrm{O}_{4} \\ 0.8 / 39 & 0.06 / 1 & 3.63 / 88 \\ 0.020 & 0.060 & 0.041 \end{array}\right\} \text { or } \quad \text { for } 1^{\text {st }} \text { mark }$		Using 2 as RAM for H

Question	Acceptable Answer	Mark	Unacceptable Answer
$7 \quad$ (a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \leftrightharpoons \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$	1	\rightarrow in place of \rightleftharpoons
(b) (i)	No equilibrium in open system/System will not reach equilibrium	1	Value of K will be changed
(ii)	$\begin{aligned} & \text { At equilibrium: moles water and ester }=0.70-0.24=\mathbf{0 . 4 6} \\ & \text { moles of ethanoic acid }=0.24 \\ & \text { moles of ethanol }=0.68-0.46=\mathbf{0 . 2 2} \\ & \mathrm{K}=[0.46][0.46][0.24][0.22]=\mathbf{4 . 0} \end{aligned}$	1 1 1	Units in final answer, 1 mark deducted

Question	Acceptable Answer	Mark	Unacceptable Answer
8 (a)	or - $\mathrm{H}_{2} \mathrm{O} \leftrightharpoons$	1	\rightarrow in place of \rightleftharpoons
(b)		1 1 1 1 1 1	

Question	Acceptable Answer	Mark	Unacceptable Answer
9 (a)	Step two $\mathrm{NO}_{2}+\mathrm{F} \rightarrow \mathrm{NO}_{2} \mathrm{~F}$	1	
(b)	$\begin{array}{llll} 2 \mathrm{NO}_{2}+\mathrm{F}_{2} & \rightarrow & 2 \mathrm{NO}_{2} \mathrm{~F} \\ \mathrm{NO}_{2}+1 / 2 \mathrm{~F}_{2} & \rightarrow & \mathrm{NO}_{2} \mathrm{~F} \end{array}$	1	
(c)	$2^{\text {nd }}$ order or 2	1	
(d)	$\mathrm{k}=\text { Initial rate } /\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]=\mathbf{4 0} \mathbf{1 ~ m o l}^{-1} \mathrm{~s}^{-1}$ 1 mark for value/ 1 mark for unit	2	

Question	Acceptable Answer	Mark	Unacceptable Answer
10 (a)	to give a higher yield or to reduce side reactions or to prevent charring	1	$\mathrm{H}_{3} \mathrm{PO}_{4}$ is a better dehydrating agent Faster reaction
(b)	sodium chloride (solution)/brine/salt water	1	
(c)	to dry the cyclohexene/dry the organic layer/drying agent/ absorbs water/removes water	1	removes impurities dehydrating agent
(d)	$\begin{aligned} & \text { Theoretical mass of cyclohexene }=\frac{82 \times 22.56}{100}=18.5 \mathrm{~g} \\ & \% \text { yield }=\frac{6.52 \times 100}{18.5}=35 \% \end{aligned}$ or Moles cyclohexanol $=22.56 / 100=0.2256 \mathrm{~mol}$ Moles cyclohexane $=6.52 / 82=0.0795 \mathrm{~mol}$ $\% \text { yield }=\frac{0.0795}{0.2256} \times 100=35.2 \% \quad \text { or } \quad 35 \%$	1 1 1	

Question	Acceptable Answer	Mark	Unacceptable Answer
11 (a)	because but-2-ene has two different groups attached to each of the carbon atoms of the double bond or because in but-1-ene one of the carbon atoms of the double bond has identical groups (H) attached 3 H atoms around the $\mathrm{C}=\mathrm{C}$ in but-1-ene Structures with explanation	1	But-1-ene, double bond at end of chain But-2-ene, double bond in middle of chain But-2-ene, symmetrical 3 H atoms at end of chain
(b)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}$	1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{3}$
(c)	```aqueous potassium (or sodium) hydroxide \(\mathrm{KOH}_{(\mathrm{aq})}\) or \(\mathrm{NaOH}_{(\mathrm{aq})}\) or or \(\mathrm{LiOH}_{(\mathrm{aq})}\) potassium (or sodium) hydroxide solution or aqueous alkali or alkali solution or water/ \(\mathrm{H}_{2} \mathrm{O}\)```	1	OH^{-}or $\mathrm{OH}^{-}{ }^{(\mathrm{aq})}$ LiOH NaOH KOH ethanolic KOH

Question	Acceptable Answer	Mark	Unacceptable Answer
(d)	aluminium chloride or AlCl_{3} or iron(III) chloride or FeCl_{3} or iron(III) bromide or FeBr_{3} or aluminium bromide or AlBr_{3}	1	FeCl_{2} or iron(II) chloride
(e)	 or Use of $\mathrm{C}_{6} \mathrm{H}_{5}$ in place of	1	

Question	Acceptable Answer	Mark	Unacceptable Answer
12 (a)	ethanal/acetaldehyde/correct structural formula	1	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(b)	cyanohydrin or hydroxynitrile or cyanoalcohol	1	nitrile
(c)	hydrolysis/acid hydrolysis	1	alkaline hydrolysis
(d) (i)	van der Waals'/London (dispersion) forces	1	
(ii)	Must be tetrahedral but dots and wedges can be replaced by solid lines	1	

Question	Acceptable Answer	Mark	Unacceptable Answer		
(iii)	$\begin{array}{l}\text { while one group would be able to bind to the appropriate region, the } \\ \text { other two would not } \\ \text { or } \\ \text { the 3 'functional' groups fail to match the binding regions of the } \\ \text { active site } \\ \text { or } \\ \text { only 1 group or 2 groups could bind (or match) the binding regions } \\ \text { or } \\ \text { The groups on the lactate ion no longer match the binding regions on } \\ \text { the active site of the enzyme } \\ \text { or } \\ \text { The lactate ion no longer complements the binding region (of the } \\ \text { active site) } \\ \text { or } \\ \text { The groups now fail to match the binding region (of the active site) }\end{array}$	Molecule is wrong shape		$]$	
:---					

[END OF MARKING INSTRUCTIONS]

