2013 Chemistry Revised

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Chemistry Revised Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Chemistry Revised Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General information for markers

The general comments given below should be considered during all marking.
1 Marks should not be deducted for incorrect spelling or loose language as long as the meaning of the word(s) is conveyed.

Example: Answers like 'distilling' (for 'distillation') and 'it gets hotter' (for 'the temperature rises') should be accepted.

2 A right answer followed by a wrong answer should be treated as a cancelling error and no marks should be given.

Example: What is the colour of universal indicator in acid solution?
The answer 'red, blue' gains no marks.
3 If a right answer is followed by additional information which does not conflict, the additional information should be ignored, whether correct or not.

Example: Why can the tube not be made of copper?
If the correct answer is related to a low melting point, and the candidate's answer is 'It has a low melting point and is coloured grey' this would not be treated as a cancelling error.

4 Full marks should be awarded for the correct answer to a calculation on its own whether or not the various steps are shown unless the question is structured or working is specifically asked for.

5 A mark should be deducted in a calculation for each arithmetic slip unless stated otherwise in the marking scheme. No marks should be deducted for incorrect or missing units at intermediate stages in a calculation.

6 A mark should be deducted for incorrect or missing units unless stated otherwise in the marking scheme. Please note, for example, that $\mathrm{KJ} \mathrm{mol}^{-1}$ is not acceptable for $\mathrm{kJ} \mathrm{mol}^{-1}$ and a mark should be deducted.

7 Where a wrong numerical answer (already penalised) is carried forward to another step, no further penalty is incurred provided the result is used correctly.

8 No mark is given for the solution of an equation which is based on a wrong principle.
Example: Use the information in the table to calculate the standard entropy change for the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}
$$

Compound	$\mathbf{S}^{\mathbf{0}} / \mathbf{J} \mathbf{K}^{\mathbf{- 1}} \mathbf{m o l}^{\mathbf{- 1}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	201
HCl	187
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	208

Using $\Delta \mathrm{S}^{\mathbf{o}}=\mathrm{S}^{\mathbf{o}}$ reactants $-\mathrm{S}^{\mathbf{o}}$ products would gain zero marks.
9 No marks are given for the description of the wrong experiment.
10 Full marks should be given for correct information conveyed by a sketch or diagram in place of a written description or explanation.

11 In a structural formula, if one hydrogen atom is missing but the bond is shown, no marks are deducted.

Examples:

Would not be penalised as the structural formula for ethyl ethanoate.
If the bond is also missing, then zero marks should be awarded.

Example:

12 If a structural formula is asked for, $\mathrm{CH}_{3}-$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ are acceptable as methyl and ethyl groups respectively.

13 With structures involving an -OH or an $-\mathrm{NH}_{2}$ group, no mark should be awarded if the ' O ' or ' N ' are not bonded to a carbon, ie $\mathrm{OH}-\mathrm{CH}_{2}$ and $\mathrm{NH}_{2}-\mathrm{CH}_{2}$.

14 When drawing structural formulae, no mark should be awarded if the bond points to the 'wrong' atom, eg

15 A symbol or correct formula should be accepted in place of a name unless stated otherwise in the marking scheme.

16 When formulae of ionic compounds are given as answers it will only be necessary to show ion charges if these have been specifically asked for. However, if ion charges are shown, they must be correct. If incorrect charges are shown, no marks should be awarded.

17 If an answer comes directly from the text of the question, no marks should be given.
Example: A student found that 0.05 mol of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$ burned to give 82.4 kJ of energy.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Name the kind of enthalpy change which the student measured.
No marks should be given for 'burning' since the word 'burned' appears in the text.

18 A guiding principle in marking is to give credit for (partially) correct chemistry rather than to look for reasons not to give marks.

Example 1: The structure of a hydrocarbon found in petrol is shown below.

Name the hydrocarbon.
Although not completely correct, the answer, ' 3 , methyl-hexane’ would gain the full mark ie wrong use of commas and dashes.

Example 2: A student measured the pH of four carboxylic acids to find out how their strength is related to the number of chlorine atoms in the molecule. The results are shown.

Structural formula	$\mathbf{p H}$
$\mathrm{CH}_{3} \mathrm{COOH}$	1.65
$\mathrm{CH}_{2} \mathrm{ClCOOH}$	1.27
$\mathrm{CHCl}_{2} \mathrm{COOH}$	0.90
$\mathrm{CCl}_{3} \mathrm{COOH}$	0.51

How is the strength of the acids related to the number of chlorine atoms in the molecule?

Again, although not completely correct, an answer like 'the more Cl_{2}, the stronger the acid' should gain the full mark.

Example 3: Why does the (catalytic) converter have a honeycomb structure?
A response like 'to make it work' may be correct but it is not a chemical answer and the mark should not be given.

Part Two: Marking Instructions for each Question
Section A

		Acceptable Answer
1	C	
2	B	
3	A	
4	D	
5	A	
6	A	
7	C	
8	B	
9	C	
10	B	
11	A	
12	B	
13	C	
14	A	
15	D	

Section B

Question		Acceptable Answer	Mark	Unacceptable answer
1	a	The electronic configuration of a carbon atom is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$. The electrons in the 2 p orbitals are said to be "degenerate". What is meant by the term "degenerate"? Equal energy/same energy	1	
1	b	Draw the electronic configuration of a carbon atom in orbital box notation. 1s 2 s 2p Double headed arrows Both 2p arrows facing down No need to put in 1 s etc	1	Lines not arrows 2 p arrows facing in opposite directions
1	c	Explain what is thought to take place when carbon atoms form four equivalent single bonds in methane. A mixing/merging/combining of one s orbital and three p orbitals/sp ${ }^{3}$ hybridisation To form four degenerate (hybrid) orbitals/or acceptable diagram showing this Or An electron promoted from 2 s to 2 p orbital	2 (4)	

Question		Acceptable Answer	Mark	Unacceptable answer
4 4	a	The manganese content of a steel paperclip can be determined by oxidising the manganese firstly into manganese(II) ions and then to the purple permanganate ion. Colorimetry is then used to find the concentration of the permanganate ion, from which the percentage manganese in the steel paperclip can be determined. What data must be collected to allow the calibration graph to be drawn? A series of standard solutions of different concentrations of KMnO_{4} is made up and their absorbances measured. Absorbances of permanganate solutions of known concentrations/variety of concentrations (must mention permanganate or manganate or purple solutions) Accept absorbancy/absorption/transmittance/transmission	1	Intensity of radiation/adsorption
4	b	Which colour of filter or wavelength of light should be used in this procedure? Green or 500 to 560 nm (Accept blue-green or green-yellow)	1	Complementary colour

Question		Acceptable Answer	Mark	Unacceptable answer
4	d	Colorimetry is not used to determine potassium content because potassium ions are not coloured. The concentration of potassium ions in a compound can be determined using atomic absorption spectroscopy at a wavelength of 405 nm . Calculate the energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of this radiation. $\begin{aligned} \mathrm{E} & =\frac{L h c}{\lambda} \text { or } \mathrm{E}=\frac{L h c}{1000 \lambda} \\ & =296 \text { or } 295.6 \text { or } 295.64 \text { or } 295.65\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$		

Question		Acceptable Answer	Mark	Unacceptable answer
5 5	a	Nickel(II) ions react quantitatively with dimethylglyoxime $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2}\right)$ forming a complex which precipitates out as a red solid. The equation for the reaction and the structure of the complex are shown below. $\mathrm{Ni}^{2+}+2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2} \rightarrow \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{2}\right)_{2}+2 \mathrm{H}^{+}$ Relative formula mass $=288.7$ What is the coordination number of nickel in the complex? 4 or four	1	
5	b	When 0.968 g of an impure sample of nickel(II) sulfate, $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, was dissolved in water and reacted with dimethylglyoxime, 0.942 g of the red precipitate was formed. Calculate the percentage, by mass, of nickel in the impulse sample of nickel(II) sulfate. Mass of nickel in DMG complex $=0.942 \times(58.7 / 288.7)=0.1915 \mathrm{~g} \text { or } 0.192 \mathrm{~g}$ $\% \mathrm{Ni}$ in impure salt $=(0 \cdot 1915 / 0 \cdot 968) \times 100=19.8 \% \quad \mathbf{1}$ (Accept 19.79% and 19.786% and 19.835% or 19.83%) (Deduct 1 mark per error up to a maximum of 2 marks)	2	20.9% ($\% \mathrm{Ni}$ in pure salt) 20.3% use of 0.968 instead of 0.942 in first line Use of AN in place of RAM (0)

Question			Acceptable Answer	Mark	Unacceptable answer
5 5	c c	i	The formulae of two very common ions of nickel are $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$. Name the complex ion $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. Hexaaquanickel(II)	1	Hexaquanickel(II) Hexaaquonickel(II) Hexaaquanickel(2)
5	c	ii	In terms of s, p and d orbitals, write down the electronic configuration of the nickel ion in $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. $\begin{aligned} & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} \\ & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{0} \end{aligned}$	1	[Ar$] 3 \mathrm{~d}{ }^{8}$
5	d		The relative ability of a ligand to split the d-orbitals when forming a complex ion is given in the spectrochemical series. Three ligands from this series and their relative ability to split the d-orbitals are shown below. $\mathrm{NH}_{3}>\mathrm{N}_{2} \mathrm{O}>\mathrm{Cl}^{-}$ The absorption spectra for $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ are shown on the following page.		

Question			Acceptable Answer	Mark	Unacceptable answer
5	d	i	Why is $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\left(\mathrm{Cl}^{-}\right)_{2}($ aq $)$ likely to be green? Red and blue are absorbed/green light transmitted or not absorbed Light of approx. $500-600 \mathrm{~nm}$ transmitted/not absorbed	1	Absorbs wavelength complementary to the wavelength of green
5	d	ii	Explain why the peaks in the absorption spectrum of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ are at shorter wavelengths. NH_{3} results in greater ligand field splitting which means that more energy is needed to promote electron. Since $\mathrm{E} \alpha \frac{1}{\lambda}$ the wavelength of light absorbed will be less d-orbitals split more or similar statement for $1^{\text {st }}$ mark Correct tie in with energy and wavelength for $2^{\text {nd }}$ mark	2	
5	d	iii	Predict the colour of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\left(\mathrm{Cl}^{-}\right)_{2}(\mathrm{aq})$. Purple/blue-green/blue/blue-violet	1 (9)	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Acceptable Answer \& Mark \& Unacceptable answer

\hline 7

7

7 \& a \& | The dominant flavours of chocolate are due to molecules called substituted pyrazines. These are produced when sugars and amino acids react during the roasting of cocoa beans. |
| :--- |
| An example is 2,3-dimethylpyrazine |
| This compound is responsible for the nutty flavour of chocolate. Other substances responsible for the distinctive smell of chocolate are aldehydes including phenylethanal, 2-methylbutanal and 3-methylbutanal. |
| Write the molecular formula for 2,3-dimethylpyrazine. |
| $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$ | \& 1 \&

\hline 7 \& b \& | Draw a skeletal formula for 2-methylbutanal and circle the asymmetric carbon present. |
| :--- |
| 1 mark for drawing the formula correctly 1 mark for circling the correct carbon | \& 2 \& Structural formula showing all the carbons unacceptable for $1^{\text {st }}$ mark but can still get $2^{\text {nd }}$ mark

\hline
\end{tabular}

Question		Acceptable Answer	Mark	Unacceptable answer
7	c	The low resolution proton NMR spectrum shown is that of one of the aldehydes in chocolate. Explain which of the three aldehydes above would give this proton NMR spectrum. Phenylethanal $2^{\text {nd }}$ mark for correct explanation such as: 3 peaks since there are 3 different proton environments. 3.2 ppm protons adjacent to carbonyl carbon 6.7 ppm aromatic protons It has the correct ratio for hydrogens 5:1 ratio of the largest to smallest	2	

| Question | | Acceptable Answer | Mark | Unacceptable answer |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | d | Anandamide is another substance also found in small
 quantities in chocolate, that plays a role in appetite,
 memory, fertility and pain depression. It binds to the
 same receptors as the cannabinoid drugs and enhances
 some of the body's natural responses.
 What general term is used for substance that behaves in
 this way?
 Agonist | | |

Question		Acceptable Answer	Mark	Unacceptable answer
8	d	There are four structural isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$. Explain which isomer is likely to have been used. The tertiary haloalkane or 2-bromomethylpropane or 2-bromo-2-methylpropane Accept 2-methyl-2-bromopropane or any other correct structural formula And Correct explanation in terms of Stability of carbocation or Steric hindrance	2	Cancelling errors apply if correct structure and wrong name or vice-versa but accept "methy" as a slip if the structure is correct But if only the name is given then do not accept errors such as "brom" or "methy" 2-methylbromopropane
8	e	Outline the mechanism for this reaction using curly arrow notation. 1 mark for reactant and for curly arrow showing heterolytic fission of $\mathrm{C}-\mathrm{Br}$ bond 1 mark for correct carbocation intermediate 1 mark for $2^{\text {nd }}$ curly arrow and final product	 3	

Question		Acceptable Answer	Mark	Unacceptable answer
9	a	State one of the characteristics of a primary standard. Fairly high molecular mass/available in high purity/ (thermodynamically) stable/soluble in water or named solvent/soluble	1	
9	b	As a part of an AH Chemistry investigation, a student had to prepare a standard solution of sodium carbonate. Outline how the student prepare this standard solution from pure sodium carbonate. 1. Accurately weigh required/correct mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dissolve completely in small volume of water. 2. Transfer the solution to a standard flask, rinsing the beaker with deionised water and transferring the rinsing's to the flask. 3. Add deionised water up to the mark adding the last few drops with a dropper. 4. Invert to mix. (Deduct 1 mark for each error/omission up to maximum of 2 marks)	2	
9	c	Outline how $250 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} \mathrm{l}^{-1}$ sodium carbonate solution would be prepared from a standard $1.00 \mathrm{~mol} \mathrm{l}^{-1}$ sodium carbonate solution. $\left(\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}\right) \mathrm{V}=\frac{0.2 \times 250}{1}=50 \mathrm{~cm}^{3}$ Measure $50 \mathrm{~cm}^{3}$ of stock solution using a pipette and transfer to a $250 \mathrm{~cm}^{3}$ standard flask. Add deionised water up to the mark, stopper and invert. (1 for correct volume, 1 for correct procedure)	2 (5)	

	uest	Acceptable Answer	Mark	Unacceptable answer
10	a	A student devised the following reaction sequence. (5) What type of reaction is taking place in step (1)? Electrophilic substitution/alkylation	$\xrightarrow{\mathrm{H}(\mathrm{aq})} \mathbf{x}$ (3) in ethanol	Nucleophilic substitution substitution Electrophilic
10	b	During step (2), chlorine firstly undergoes homolytic fission. Explain what this means. Chlorine molecules have changed into chlorine radicals or chlorine atoms or Chlorine has changed into chlorine radicals or chlorine atoms or both atoms retain one electron from the covalent bond or correct equation	1	

Question		Acceptable Answer	Mark	Unacceptable answer
10	c	Draw a structural formula for product \mathbf{X}. or any other correct SF .	1	 Ring missing or no alternate double/single bonds
10	d	What type of reaction is taking place in step (4) ? (base induced) Elimination	1	Acid induced elimination
10	e	Draw a structural formula for product \mathbf{Y}. or or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}_{2} \mathrm{Cl}$ or any other correct structural formula	1 (5)	Ring missing or no alternate double/single bonds (0) marks unless already penalised in (c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCl}_{2} \mathrm{CH}_{3}$

Question			Acceptable Answer	Mark	Unacceptable answer
11	b		In an experiment, a student obtained $3 \cdot 14 \mathrm{~g}$ of cyclohexene from 4.36 g of cyclohexanol.		
11	b	i	Calculate the percentage yield. One mole cyclohexanol gives one mole cyclohexene moles cyclohexanol $=4 \cdot 36 / 100=\mathbf{0 . 0 4 3 6}$ moles theoretical yield of cyclohexene $=0.0436 \times 82$ $=3.575(\mathrm{~g})$ $\%$ yield $=3 \cdot 14 \times 100 / 3 \cdot 575=\mathbf{8 7} \cdot \mathbf{8}(\%)$ Using 0.44 mol, gives 3.608 g giving 87.029 or 87.03 (\%) for 3 marks Deduct 1 mark per error Accept any answer between 87 and 88 (\%) for 3 marks Award 1 mark for both formula masses correct	3	Wrong FM, deduct 1 mark
11	b	ii	Give a reason why the yield is not 100%. Impure starting materials/mechanical losses/mass transfer losses/reaction may not go to completion/side reactions/equilibrium reaction	1	

Question		Acceptable Answer	Mark	Unacceptable answer	
$\mathbf{1 1}$	c	Using your knowledge of chemistry, comment on how it could be established that the product of reaction (2), is cyclohexanone.			
This is an open ended question 1 mark: The student has demonstrated a limited understanding of the chemistry involved. The student has made some statement(s) which is/are relevant, showing that at least a little of the relevant chemistry is understood. 2 marks: The student has demonstrated a reasonable understanding of the chemistry involved. The student makes some statements which are relevant showing understanding of the problem.	$\mathbf{3}$	The student has demonstrated no understanding of the chemistry involved. There is no evidence that the student has recognised the area of chemistry involved or has given any statement of a relevant chemistry principle. This mark would also be given when the student merely restates the chemistry given in the question.			
3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding of the chemistry involved. The student has shown a good understanding of the chemistry involved and has provided a logically correct answer to the question asked. This type of response might include a statement of the principles involved, a relationship or an equation and an application of these to answer the question. This does not mean that the answer has to be what might be termed an 'excellent' or 'complete' answer.		(8)			

	uest	Acceptable Answer	Mark	Unacceptable answer
12	a	5.00 g of an organic compound \mathbf{A} was burned completely producing 11.89 g of CO_{2} and 6.08 g of $\mathrm{H}_{2} \mathrm{O}$ as the only products. Using the information above, calculate the empirical formula for compound \mathbf{A}. Mass of $\mathrm{C}=(12 / 44 \times 11.9)=3.243 \mathrm{~g}$ Mass of $\mathrm{H}=(2 / 18 \times 6.08)=0.676 \mathrm{~g}$ So mass of $\mathrm{O}=5.00-3.243-0.676=1.081 \mathrm{~g}$ C : H : O 3.243: 0.676: 1.081 Ratio of moles $0.270: 0.676: 0.0676$	3	Correct answer, no working = 1 mark
12	b	The infra-red spectrum of compound \mathbf{A} is shown below. Which bond is responsible for the peak at $1140 \mathrm{~cm}^{-1}$? C-O (stretch)	1	

