\square

NATIONAL QUALIFICATIONS 2008

WEDNESDAYY 21 MAY BIOTECHNOLOGY $1.00 \mathrm{PM}-3.00 \mathrm{PM}$

Fill in these boxes and read what is printed below.

Full name of centre

Forename(s)

Date of birth

Scottish candidate number

Town
\square
Surname

Number of seat

SECTION A (25 marks)

Instructions for completion of Section A are given on page two.
For this section of the examination you must use an HB pencil.

SECTION B AND SECTION C (75 marks)

1 (a) All questions should be attempted.
(b) It should be noted that in Section \mathbf{C} questions 1 and 2 each contain a choice.

2 The questions may be answered in any order but all answers are to be written in the spaces provided in this answer book, and must be written clearly and legibly in ink.
3 Additional space for answers will be found at the end of the book. If further space is required, supplementary sheets may be obtained from the invigilator and should be inserted inside the front cover of this book.
4 The numbers of questions must be clearly inserted with any answers written in the additional space.
5 Rough work, if any should be necessary, should be written in this book and then scored through when the fair copy has been written. If further space is required, a supplementary sheet for rough work may be obtained from the invigilator.
6 Before leaving the examination room you must give this book to the invigilator. If you do not, you may lose all the marks for this paper.

SECTION A

Read carefully

1 Check that the answer sheet provided is for Biotechnology Intermediate 2 （Section A）．
2 For this section of the examination you must use an HB pencil and，where necessary，an eraser．
3 Check that the answer sheet you have been given has your name，date of birth，SCN（Scottish Candidate Number）and Centre Name printed on it．
Do not change any of these details．
4 If any of this information is wrong，tell the Invigilator immediately．
5 If this information is correct，print your name and seat number in the boxes provided．
6 The answer to each question is either A，B，C or D．Decide what your answer is，then，using your pencil，put a horizontal line in the space provided（see sample question below）．
7 There is only one correct answer to each question．
8 Any rough working should be done on the question paper or the rough working sheet，not on your answer sheet．
9 At the end of the exam，put the answer sheet for Section A inside the front cover of this answer book．

Sample Question

Which of the following foods contains a high proportion of fat？
A Butter
B Bread
C Sugar
D Apple

The correct answer is \mathbf{A}－Butter．The answer \mathbf{A} has been clearly marked in pencil with a horizontal line（see below）．

A B C D
 ロロロ

Changing an answer

If you decide to change your answer，carefully erase your first answer and using your pencil，fill in the answer you want．The answer below has been changed to \mathbf{D} ．

SECTION A

All questions in this Section should be attempted.

Answers should be given on the separate answer sheet provided.

1. Which structure removes excess water in the protozoa Paramecium?

A Contractile vacuole
B Flagellum
C Nucleus
D Cell wall
2. Which line in the table correctly describes the composition and activity of enzymes?

	Composition	Enzyme activity
A	carbohydrate	specific
B	protein	specific
C	carbohydrate	non-specific
D	protein	non-specific

Questions 3 and 4 refer to the following table.

	Groups of compounds
A	carbohydrates
B	lipids
C	proteins
D	vitamins

3. Which group of compounds includes chitin, cellulose and starch?
4. Which group of compounds is built up from amino acids?
5. A culture of yeast cells contained 100000 cells at the start of an experiment. Yeast cells divide asexually once every 15 minutes.
Calculate the number of yeast cells which would be present after 1 hour.

A 200000
B 400000
C 800000
D 1600000
6. An experiment was set up to demonstrate that the enzyme pectinase makes cloudy fruit juice clear.

Which line in the table below shows the correct contents of a control tube for this experiment?

	Volume of fruit juice $\left(\mathrm{cm}^{3}\right)$	Volume of pectinase $\left(\mathrm{cm}^{3}\right)$	Volume of water $\left(\mathrm{cm}^{3}\right)$
A	0	1	4
B	4	1	1
C	4	0	0
D	4	0	1

7. In the nitrogen cycle, nitrification is the conversion of

A ammonia to nitrate
B nitrogen to nitrate
C ammonia to nitrogen
D nitrogen to protein.
8. The micro-organism involved in the process of nitrogen fixation is

A Acetobacter
B Rhizobium
C Saccharomyces
D Zygomonas.
9. Micro-organisms can be stained with a vital stain.

One of the reasons for using a vital stain is to
A fix the micro-organisms
B kill the micro-organisms
C view live micro-organisms
D make the micro-organisms divide.
10. The loop transfer of micro-organisms from solid to liquid medium is the transfer of bacteria from

A an agar plate to nutrient broth culture
B an agar plate to an agar plate
C a nutrient broth culture to an agar plate
D a nutrient broth culture to nutrient broth culture.

Questions 11 and 12 refer to the following steps in good laboratory practice in a biotechnology laboratory.

W Putting on and fastening a lab coat
X Tying back long hair
Y Swabbing the bench surface with disinfectant

Z Washing and drying hands
11. Which of the following steps is not part of the preparation of a person in good laboratory practice in a biotechnology laboratory?
A W
B X
C Y
D Z
12. Which of the following is the correct order of these steps before starting work in a biotechnology laboratory?

Questions 14,15 and 16 refer to the following information about oxygen production by algae.
An experiment was set up to investigate the effect of various factors on oxygen production in four flasks of algae ($\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z). The table below shows the results of this experiment.

Flask	W	X	Y	Z
Carbon dioxide concentration (units)	5	1	5	5
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	25	25	25	20
Light (lux)	0	5	10	5
Oxygen production (units)	0	5	20	10

14. Which flasks should be compared to show the effect of light on oxygen production?

A Flasks W and X
B Flasks Y and Z
C Flasks W and Z
D Flasks W and Y
15. The percentage increase in oxygen production in flask Y compared to flask X is

A 4%
B 15%
C 75%
D 300\%.
16. Which flask would produce the largest increase in biomass?

A W
B X
C Y
D Z
17. The raw materials used in photosynthesis are

A water and glucose
B glucose and carbon dioxide
C oxygen and carbon dioxide
D carbon dioxide and water.
18. The fungus Aspergillus is used in the industrial production of

A acetic acid
B citric acid
C ethanol
D penicillin.
19. A technique used in the identification and location of genes on chromosomes is

A genome mapping
B selective breeding
C tissue culture
D genetic modification.
20. In saprophytic nutrition, food is obtained from dead or decaying organisms.

This type of nutrition involves the following sequence of events.
A extracellular enzymes \longrightarrow internal digestion \longrightarrow external digestion \longrightarrow external digestion \longrightarrow absorption of food
B absorption of food \longrightarrow extracellular enzymes
C extracellular enzymes \longrightarrow absorption of food
D absorption of food \longrightarrow extracellular enzymes \longrightarrow internal digestion
21. Which line in the table correctly identifies the benefit to the plant and the micro-organism from a mycorrhizal association?

	Plant obtains	Micro-organism obtains
A	Nitrate	Carbohydrate
B	Carbohydrate	Protein
C	Carbohydrate	Nitrate
D	Nitrate	Protein

Questions 22 and 23 refer to the following information.

The tables below show the results from an experiment set up to look at the preservation of peas at room temperature. If the peas become spoiled, micro-organisms cause the solutions to turn cloudy.

Concentration of sodium chloride (\%)	Cloudiness of preservative solution	
$0 \cdot 1$	+++	
$1 \cdot 0$	+++	Key:$\begin{array}{ll} +++ & \text { very cloudy } \\ ++ & \text { cloudy } \\ + & \text { slightly cloudy } \end{array}$
$10 \cdot 0$	++	
Concentration of potassium sorbate (\%)	Cloudiness of preservative solution	
$0 \cdot 1$	+++	
$1 \cdot 0$	++	
$10 \cdot 0$	+	

22. What is the variable under investigation in this experiment?
A Volume of preservative solution
B Type of preservative solution
C Cloudiness of preservative solution
D Temperature of preservative solution
23. A valid conclusion from these results is that

A $0 \cdot 1 \%$ sodium chloride preserves the peas better than $0 \cdot 1 \%$ potassium sorbate

B 10% sodium chloride preserves the peas better than 10% potassium sorbate

C $0 \cdot 1 \%$ potassium sorbate preserves the peas better than $0 \cdot 1 \%$ sodium chloride

D 10% potassium sorbate preserves the peas better than 10% sodium chloride.
24. The change in the number of bacteria growing in nutrient broth culture kept at $30^{\circ} \mathrm{C}$ for 48 hours is shown in the graph below.

During which 8 hour period was there the greatest increase in the number of bacteria?
A $0-8$ hours
B 8-16 hours
C 16-24 hours
D 24-32 hours
25. Which line in the table correctly describes activated sludge treatment of sewage?

	Type of micro- organism	Treatment of sewage
A	Anaerobic	Mixed by bubbling of air
B	Aerobic	Trickled over stones
C	Anaerobic	Trickled over stones
D	Aerobic	Mixed by bubbling of air

Candidates are reminded that the answer sheet for Section A MUST be returned INSIDE the front cover of this answer book.

SECTION B

All questions in this section should be attempted. All answers must be written clearly and legibly in ink.

1. (a) The diagram shows the algal cell Chlorella.

(i) Complete the diagram by labelling the structures using the words from the list below.

List
capsule
cytoplasm
food vacuole
cell membrane
chloroplast
cell wall

(ii) State the function of the nucleus.
\qquad
(iii) Name the method of asexual reproduction used by Chlorella.
\qquad

1. (continued)

(b) Japanese seaweed farmers grow algae on nets hung in shallow water. The algae can be harvested for food.
(i) Explain why these algae grow best in shallow water.
\qquad
\qquad
\qquad
(ii) Name the gas released by the algae into the water during daylight.
\qquad
2. An experiment was set up to investigate amylase production by different species of bacteria (W, X, Y and Z). The following procedure was carried out.

1 A nutrient broth culture of each species of bacteria (W, X, Y and Z) was prepared.
2 The cultures were incubated for 48 hours at $30^{\circ} \mathrm{C}$.
3 Liquid from each culture was transferred to separate wells punched in a starch agar plate.
4 The starch agar plate was incubated for 24 hours at $30^{\circ} \mathrm{C}$.
5 The plate was flooded with iodine solution.
The diagram shows the results of the experiment after the plate had been flooded with iodine solution. Iodine solution turns blue/black in the presence of starch.

(a) (i) Name one factor, not mentioned above, which should be kept the same to make this experiment valid.
\qquad
(ii) State one way of improving the reliability of this experiment.
\qquad
2. (a) (continued)
(iii) Give two conclusions from the results of this experiment.

Conclusion 1 \qquad
\qquad
Conclusion 2 \qquad
\qquad
(b) The optimum temperature for this enzyme is $30^{\circ} \mathrm{C}$.

Describe the effect on the size of the clear zone for culture W of repeating the experiment at $20^{\circ} \mathrm{C}$.
\qquad
(c) The wells in the starch agar plate were punched out using a metal cork borer in this experiment.

The metal cork borer was dipped in ethanol and then flamed. Give a reason for this procedure.
\qquad
3. (a) The diagram shows the aseptic transfer of the fungus Mucor from one malt agar plate (X) to another malt agar plate (Y).

(i) What is the name given to the mat of fungal threads transferred in the diagram above?
\qquad
(ii) Name an instrument which could be used in the transfer of Mucor.
\qquad
(iii) The table shows the steps in the aseptic transfer of Mucor.

Complete the table by describing what happens in steps 4 and 8 .

Step 1: Sterilise instrument that is used to transfer Mucor
Step 2: Lift the lid on plate X
Step 3: Cut and remove a block of agar with Mucor
Step 4:
Step 5: Lift lid on plate Y
Step 6: Place block of agar with Mucor onto plate Y
Step 7: Replace lid on plate Y
Step 8:

3. (continued)

(b) Decide if the following statements about reproduction in Mucor are True or False and tick $(\boldsymbol{\checkmark})$ the correct box.

If the answer is False, write the correct word in the Correction box to replace the word underlined in the statement.

Statement	True	False	Correction
Sexual reproduction in Mucor occurs by fusion of zygospores.			
Asexual reproduction in Mucor produces sporangia.			
The cells in Mucor produced by asexual reproduction are identical.			

4. Methane emissions from landfills, agriculture and other sources are shown in the table below.

	Methane emissions (units)		
Source	1995	2000	2005
Landfills	64	56	54
Agriculture	58	58	54
Others	86	28	6

(a) Complete the bar chart below to compare methane emissions in 1995 with those in 2000 and 2005.
(Additional graph paper, if required, can be found on page 30.)
\square

Landfills

Others

4. (continued)
(b) Complete the following sentences about landfills by underlining one of the options in each pair.
The reduction in methane emissions from landfills has been due to $\left\{\begin{array}{l}\text { less } \\ \text { more }\end{array}\right\}$ organic material being placed into the landfills. The production of methane in landfills is the result of $\left\{\begin{array}{l}\text { aerobic } \\ \text { anaerobic }\end{array}\right\}$ respiration by micro-organisms.
(c) Small-scale digesters are used to produce methane in developing countries with an agricultural economy.
(i) What source of materials could be used in these anaerobic digesters?
\qquad
(ii) State one use of the methane produced.
5. The effect of different bacteria on lactic acid concentration during the production of yoghurt from milk at $30^{\circ} \mathrm{C}$ is shown in the graph.

(a) (i) What is the lactic acid concentration in the culture of Lactobacillus after 9 hours?
(ii) How long does it take for the lactic acid concentration to increase by 100% in the culture of Streptococcus from the start of the experiment?
5. (a) (continued)
(iii) Calculate the percentage increase in lactic acid concentration in the mixed culture of Lactobacillus and Streptococcus after 6 hours.

Space for calculation
\qquad \%
(b) In the milk with the Lactobacillus culture, the pH dropped from $6 \cdot 8$ to $4 \cdot 5$ by the end of yoghurt production.

Predict the final pH of the yoghurt if the experiment had been carried out at $15^{\circ} \mathrm{C}$, rather than $30^{\circ} \mathrm{C}$.

Tick (\mathcal{J}) the correct box
pH
$4.0 \quad \square$
$4 \cdot 5$

5•5

$7 \cdot 5$

(c) Give one benefit of converting milk into yoghurt.
\qquad
(d) Decide if the following statements about yoghurt production are True or False and tick (\checkmark) the correct box.

If the answer is False, write the correct word in the Correction box to replace the word underlined in the statement.

Statement	True	False	Correction
Lactic acid can be used as a flavour enhancer in the foods.			
Lactic acid is produced as a result of the breakdown of protein by Lactobacillus			

6. Oil seed rape plants can be grown as an energy crop.

Complete the following sentences by underlining one of the options in each pair.
(a) Energy can be fixed by crops in the process of $\left\{\begin{array}{l}\text { photosynthesis } \\ \text { respiration }\end{array}\right\}$. These energy crops can be used to provide $\left\{\begin{array}{l}\text { medicine } \\ \text { fuel }\end{array}\right\}$. One benefit of this form of energy is that it is a $\left\{\begin{array}{l}\text { non-renewable } \\ \text { renewable }\end{array}\right\}$ source.
(b) The table below shows the area of land set aside to grow energy crops in 2004 in the United Kingdom.

Type of energy crop	Area of land (units)
Oil seed rape	10000
Erucic acid rape	30000
Linseed	60000

(i) What percentage of the land set aside for energy crops is used to grow linseed?

Space for calculation

\qquad \% 1
(ii) Complete the pie chart using all the information in the table.
(An additional pie chart, if required, can be found on page 31.)

7. Single cell protein (SCP) can be produced by growing micro-organisms on waste materials from industrial sources.
(a) Name a suitable waste material used to produce SCP and its industrial source.

Waste material
Source of material \qquad
(b) Give one benefit to the industry of using its waste in SCP production.
\qquad
\qquad
(c) Supermarkets sell meat substitutes made from SCP.
(i) Give one benefit to the consumer of this product.
\qquad
\qquad
(ii) Identify the type of micro-organism involved in the production of SCP.

Underline the correct answer.
Algae
Bacteria
Fungi
Protozoa
Viruses
8. Knowledge of the melting and setting temperatures of agar is necessary before deciding on an appropriate pouring temperature.
(a) Draw lines linking each process to its correct temperature.

Process	Temperature
Melting	$55^{\circ} \mathrm{C}$
Pouring	$95^{\circ} \mathrm{C}$
Setting	$42^{\circ} \mathrm{C}$

(b) The diagrams below show three agar plates (X, Y and Z) poured by a student, viewed from above and the side.

Plate X

(i) Identify the agar plate suitable for use in culturing micro-organisms.

Plate \qquad
(ii) The other two plates are unsuitable for use. Identify the unsuitable agar plates and give a reason for each of your choices.

Plate \qquad
Reason \qquad
\qquad
Plate \qquad
Reason \qquad
\qquad
8. (b) (continued)
(iii) Choose one plate which is unsuitable for use. Describe the error that the student could have made in preparing this plate and how this error could have been prevented.

Plate \qquad

Error \qquad
\qquad

Prevention \qquad
\qquad
(c) After setting, agar plates are stored upside down before use.

Give a reason for storing agar plates in this way.
\qquad
\qquad
9. An experiment was set up to investigate whether samples from three different parts of a pine tree (cones, needles and bark) could kill bacteria.

Each sample was crushed and mixed with water and some of the water added to a separate paper disc. The discs were placed on the surface of an agar plate covered with bacteria as shown below.

(a) (i) Name one factor which should be kept the same when setting up the agar plate in this experiment.
\qquad
(ii) Describe what should be added to paper disc 1 to make it a valid control.
\qquad

9. (continued)

The diagram below shows the results of this experiment after the bacteria have grown.

(b) Describe what you would measure to obtain the results in this experiment.
\qquad
\qquad
(c) Which sample(s) from the pine tree stopped the growth of the bacteria?
\qquad
(d) Fungi also produce chemicals which stop the growth of bacteria.
(i) Name this type of chemical.
\qquad
(ii) Give a reason why some fungi release chemicals into their natural environment which stop the growth of bacteria.
\qquad
\qquad
10. Silage is made by the action of micro-organisms on fresh grass. The stages in this process are shown below.

Stage 1: Fresh grass compressed into black, plastic bags
Stage 2: Suitable conditions for growth of micro-organisms
Stage 3: Bacteria break down sugars in grass resulting in a temperature increase
Stage 4: Lactic acid produced
Stage 5: Silage production complete
(a) (i) Name the type of micro-organism involved in stage 2.
\qquad
(ii) Describe the suitable conditions required for stage 2 .
\qquad
(b) Name the process that breaks down sugars in stage 3.
\qquad
(c) What effect does the lactic acid produced in stage 4 have on the
(i) number of bacteria causing putrefaction (decay) of the silage?
\qquad
(ii) quality of silage produced?
\qquad
(d) Give one use of silage.
\qquad
(e) A farmer tried a new technique of adding micro-organisms to the fresh grass.

Identify an advantage of this new technique.
Underline the correct response.
produces more sugars produces acidic conditions increases pH

[Turn over for SECTION C on Page twenty-six

SECTION C
Both questions in this section should be attempted.
Note that each question contains a choice.
Questions 1 and 2 should be attempted on the blank pages which follow.
Supplementary sheets, if required, may be obtained from the invigilator.
Labelled diagrams may be included where appropriate.

1. Answer either A or B.
A. The diagrams below show the human insulin gene and a bacterium.

Describe the steps involved in genetically engineering this bacterium to produce human insulin.

Give one use and one benefit of genetically engineered insulin in medical treatments.

OR
B. The diagram below shows the steps involved in the production of an alternative car fuel using maize.

Step 1

product C

Production of alternative car fuel
Step 4

Name products A, B and C and describe the steps in their production.

SPACE FOR ANSWER TO QUESTION 1

Please complete the box below to indicate which part, A or B, you are answering.
\square
2. Answer either A or B.
A. Describe the structure of a virus and the stages in its replication.
(Labelled diagrams may be used in your answer).

OR

B. Compare the processes of aerobic and anaerobic respiration in yeast in terms of raw materials used and products formed.
(A table may be used in your answer).

SPACE FOR ANSWER TO QUESTION 2

Please complete the box below to indicate which part, A or B , you are answering.
\square

Landfills

Others

1995
Year

ADDITIONAL SPACE FOR ANSWERS

ADDITIONAL PIE CHART FOR QUESTION 6(b)(ii)

