FOR OFFICIAL USE		
<u>X008/301</u>		Total for Sections B and C
NATIONAL QUALIFICATIONS 2009	FRIDAY, 22 MAY 1.00 PM – 3.30 PM	BIOTECHNOLOGY HIGHER

Full name of centre Town Forename(s) Surname Date of birth Day Month Year Scottish candidate number Number of seat

SECTION A (30 marks)

Instructions for completion of Section A are given on page two. For this section of the examination you must use an HB pencil.

SECTION B and SECTION C (100 marks)

- (a) All questions should be attempted. 1
 - (b) It should be noted that in Section C questions 1 and 2 each contain a choice.
- The questions may be answered in any order but all answers are to be written in the spaces 2 provided in this answer book, and must be written clearly and legibly in ink.
- 3 Additional space for answers will be found at the end of the book. If further space is required, supplementary sheets may be obtained from the invigilator and should be inserted inside the front cover of this book.
- 4 The numbers of questions must be clearly inserted with any answers written in the additional space.
- 5 Rough work, if any should be necessary, should be written in this book and then scored through when the fair copy has been written. If further space is required, a supplementary sheet for rough work may be obtained from the invigilator.
- 6 Before leaving the examination room you must give this book to the invigilator. If you do not, you may lose all the marks for this paper.

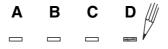
SECTION A

Read carefully

- 1 Check that the answer sheet provided is for **Biotechnology Higher (Section A)**.
- 2 For this section of the examination you must use an **HB pencil** and, where necessary, an eraser.
- Check that the answer sheet you have been given has your name, date of birth, SCN (Scottish Candidate Number) and Centre Name printed on it.
 Do not change any of these details.
- 4 If any of this information is wrong, tell the Invigilator immediately.
- 5 If this information is correct, **print** your name and seat number in the boxes provided.
- 6 The answer to each question is **either** A, B, C or D. Decide what your answer is, then, using your pencil put a horizontal line in the space provided (see sample question below).
- 7 There is **only one correct** answer to each question.
- 8 Any rough working should be done on the question paper or the rough working sheet, **not** on your answer sheet.
- 9 At the end of the exam, put the **answer sheet for Section A inside the front cover of this answer book**.

Sample Question

What name is given to a culture of micro-organisms which contains more than one species of organisms?


- A Mixed
- B Pure
- C Simple
- D Complex

The correct answer is **A**—Mixed. The answer **A** has been clearly marked in **pencil** with a horizontal line (see below).

Changing an answer

If you decide to change your answer, carefully erase your first answer and using your pencil, fill in the answer you want. The answer below has been changed to D.

SECTION A

All questions in this Section should be attempted.

- **1.** Which of the following structures is present in both eukaryotic and prokaryotic cells?
 - A Lysosome
 - B Chloroplast
 - C Mitochondrion
 - D Ribosome
- **2.** Which line in the table below describes correctly prokaryotic cells?

	Peptidoglycan	DNA
А	In cell wall	Single stranded
В	In cell membrane	Double stranded
С	In cell wall	Double stranded
D	In cell membrane	Single stranded

- **3.** The following steps occur during the replication of a virus.
 - 1 alteration of host's biochemistry
 - 2 production of viral protein coats
 - 3 replication of viral DNA

In which sequence do these events occur?

- $A \quad 1 \to 3 \to 2$
- B $1 \rightarrow 2 \rightarrow 3$
- C $3 \rightarrow 2 \rightarrow 1$
- $D \quad 3 \to 1 \to 2$

- **4.** In the exponential phase of bacterial growth, the population doubles every half hour. If there are 2500 bacteria at the start of this phase, how long will it take to increase the population beyond 1 million?
 - A 0.5 hour
 - B 4.5 hours
 - C 9 hours
 - D 45 hours
- **5.** If ten percent of the bases in a molecule of DNA are adenine, what is the ratio of adenine to guanine in the same molecule?
 - A 1:1
 - B 1:2
 - C 1:3
 - D 1:4
- 6. A polypeptide is synthesised on a molecule of mRNA which has 1200 bases. The amino acids in the polypeptide have an average mass of 90 units.

What is the total mass of the polypeptide?

- A 12 000 units
- B 36 000 units
- C 72 000 units
- D 108 000 units

7. Which line in the table below identifies correctly the number of carbon atoms present in each of the named intermediate compounds of respiration?

	Name of compound						
	Acetyl group Pyruvic acid Citric acid						
A	2	3	6				
В	2	3	3				
С	4	6	3				
D	4	6	6				

8. The base sequence of a short piece of DNA is shown below.

AGCTTACG

During replication, an inversion mutation occurs on the complementary strand synthesised on this piece of DNA.

Which of the following is the mutated complementary strand?

A T C G A A T G A B A G C T T A G C

C T C G A A T C G

- D T C G A A T G C
- **9.** The Jacob Monod model of gene expression involves the following steps.
 - W Gene expression
 - X Exposure to inducer
 - Y Removal of inhibition
 - Z Binding to repressor

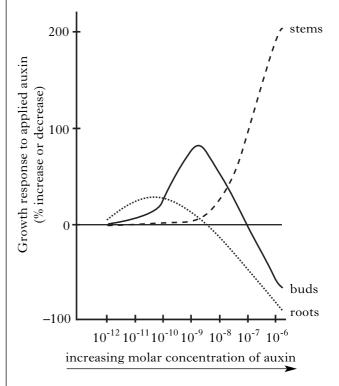
The correct order of these steps is

- A Z X Y W
- BWZXY
- $C \quad Z \ W \ X \ Y$
- D X Z Y W.

- **10.** Which of the following identifies correctly the requirements to produce complementary DNA (cDNA)?
 - A mRNA template, DNA nucleotides, ATP and reverse transcriptase
 - B DNA template, RNA nucleotides, ATP and reverse transcriptase
 - C mRNA template, DNA nucleotides, ATP and endonuclease
 - D DNA template, RNA nucleotides, ATP and endonuclease
- **11.** A humoral response is best described as
 - A a response by T lymphocytes to foreign antigens
 - B a response by B lymphocytes to foreign antigens
 - $C \quad \text{the production of antibodies by T lymphocytes} \\$
 - D the production of antigens by B lymphocytes.
- 12. The role of lysosomes within phagocytes is to
 - A store enzymes which destroy bacteria
 - B neutralise bacterial toxins
 - C produce antibodies in response to bacterial antigens
 - D engulf bacteria.

13. An investigation was carried out to find out if a disinfectant was biocidal or biostatic to a species of bacteria.

Which line in the table below identifies correctly the results obtained with a biocidal disinfectant?

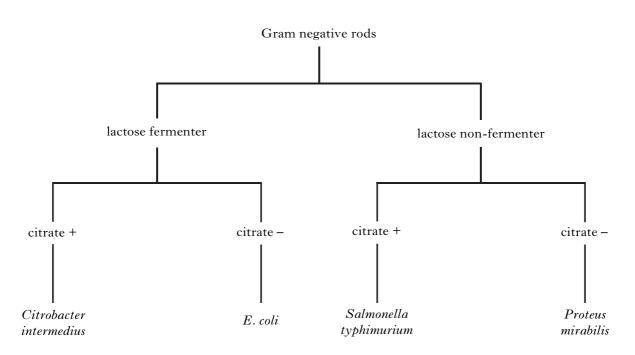

	Growth in Nutrient Agar	Growth in medium containing disinfectant	Growth in medium after exposure to disinfectant
А	yes	no	no
В	yes	no	yes
С	no	no	no
D	yes	yes	yes

14. Bacteriophages are diluted, mixed with a bacterial broth culture, transferred to an agar plate and incubated.

The technique being described is

- A bacterial lawn preparation
- B viable count
- C total count
- D plaque assay.
- **15.** A mass of unorganised plant cells growing on an agar medium is called a
 - A meristem
 - B callus
 - C colony
 - D tissue.

16. The effect of auxin on the growth of a plant tissue culture was investigated. The results are shown in the graph below.

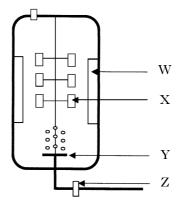


What conclusion can be drawn from this graph?

- A Stems increase in size as auxin concentration decreases.
- B Roots increase in size as auxin concentration increases.
- C At auxin concentrations less than 10^{-9} M stems and roots increase in size but buds decrease.
- D At auxin concentrations greater than 10^{-9} M stems increase in size but buds and roots do not.

[Turn over

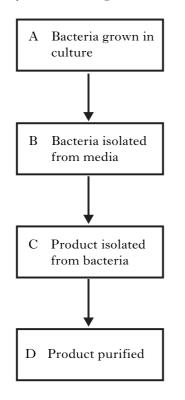
17. The key below identifies some Gram negative rods on the basis of biochemical tests.


Which of the following statements is true for *E. coli*?

- A It ferments lactose and cannot grow on citrate.
- B It ferments lactose and can grow on citrate.
- C It does not ferment lactose and cannot grow on citrate.
- D It does not ferment lactose and can grow on citrate.
- **18.** Biochemical tests were carried out on *E. coli*. The results showed that *E. coli* could break down hydrogen peroxide and that cytochrome c was absent.

What conclusion can be drawn about the enzymes produced by *E. coli*?

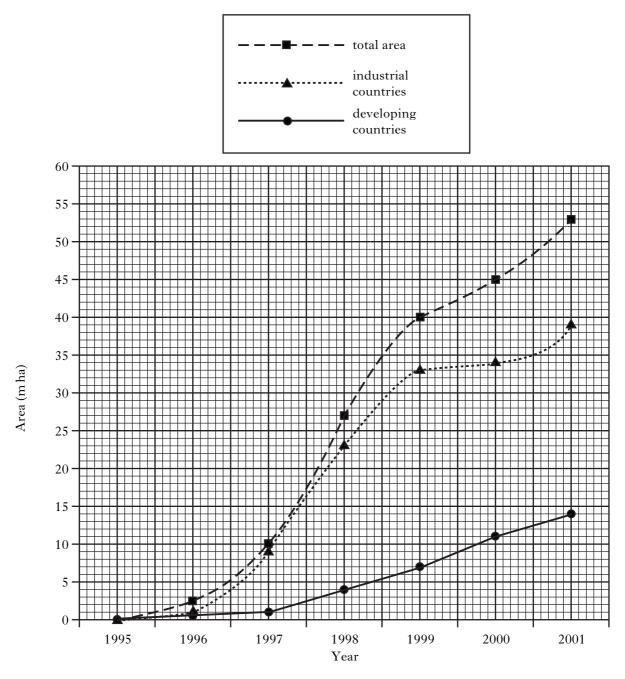
- A Catalase and cytochrome oxidase are produced.
- B Cytochrome oxidase is produced but catalase is not produced.
- C Catalase is produced but cytochrome oxidase is not produced.
- D Neither catalase nor cytochrome oxidase is produced.
- 19. A culture contained 5×10^8 bacteria per cm³. When 0.1 cm^3 of a serial dilution of the culture was plated and incubated, 50 colonies grew. By how many times had the original culture been diluted before plating?
 - $A = 10^{5}$
 - $B = 10^{6}$
 - $C = 10^{7}$
 - $D = 10^{8}$


20. The diagram below shows an aerobic fermenter.

Which line in the table below identifies correctly the components of the fermenter?

	W	X	Y	Ζ
А	Paddles	Baffles	Sparger	Air filter
В	Baffles	Paddles	Sparger	Air filter
C	Baffles	Paddles	Air filter	Sparger
D	Paddles	Baffles	Air filter	Sparger

21. The stages involved in the process of isolating an intracellular product from bacteria are shown below. Identify the stage at which **both** enzymes and detergents would be used.

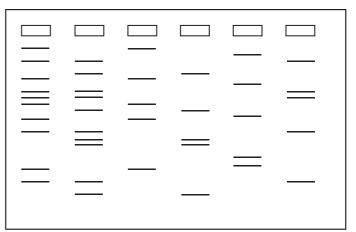


- **22.** Protoplasts are formed from plant cells by removal of the
 - A nucleus
 - B cell wall
 - C cytoplasm
 - D cell membrane.
- 23. Embryo manipulation is a technique used to
 - A determine the sex of an embryo
 - B introduce new features
 - C increase the rate of reproduction
 - D produce transgenic animals.

- **24.** Which of the following methods is used to extract citric acid from liquid medium?
 - A Solvent extraction
 - B Flocculation
 - C Distillation
 - D Addition of lime
- **25**. Which term is used to describe the production of a large number of identical plants?
 - A Cloning vectors
 - **B** Transformation
 - C Microinjection
 - D Micropropagation

[Turn over

26. The graph below shows the area of genetically modified crops grown in industrial and developing countries between 1995 and 2001.

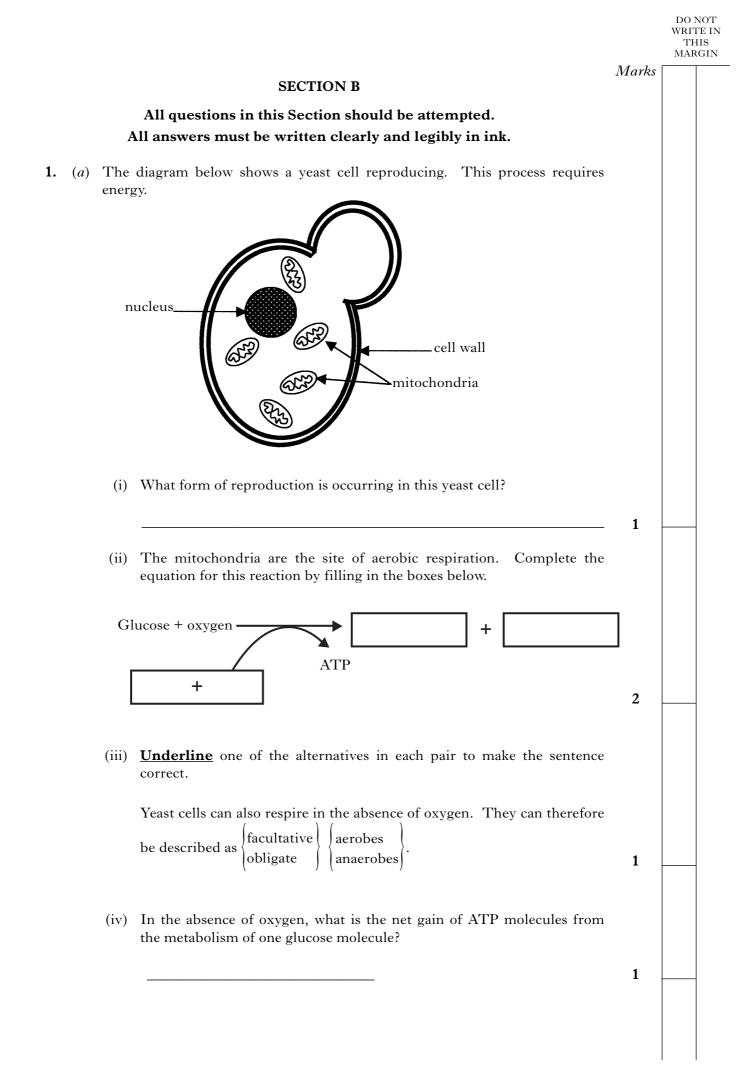

In industrial countries, what was the greatest increase in the area of genetically modified crops in a single year?

- A 3 m ha
- B 10 m ha
- C 14 m ha
- D 17 m ha

- 27. Which of the following medical products is **not** produced in transgenic animals?
 - A Interferon
 - B Alpha-1-antitrypsin
 - C Penicillin
 - D Blood clotting factor
- **28.** Which of the following techniques is used in stem cell culture?
 - A Embryo cloning
 - B Somatic cell cloning
 - C Embryo manipulation
 - D Hybrid cell production

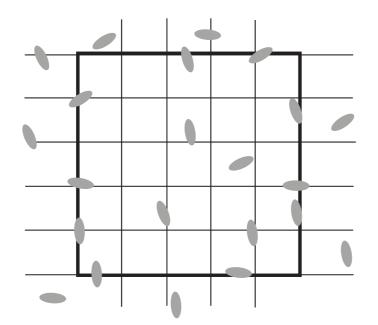
29. The diagram below shows the result of a DNA profile of samples collected from two crime scenes and four suspects.

Which suspect was present at both crime scenes?


Crime Crime Suspect Suspect Suspect Suspect scene scene A B C D 1 2

30. Which line in the table below identifies correctly the components of a biosensor?

	Signal	Transducer
A	Antibody	Dye
В	Dye	Antibody
С	Luminescence	Dye
D	Antibody	Enzyme


Candidates are reminded that the answer sheet for Section A MUST be returned INSIDE the front cover of this answer book.

[Turn over for Section B on Page ten

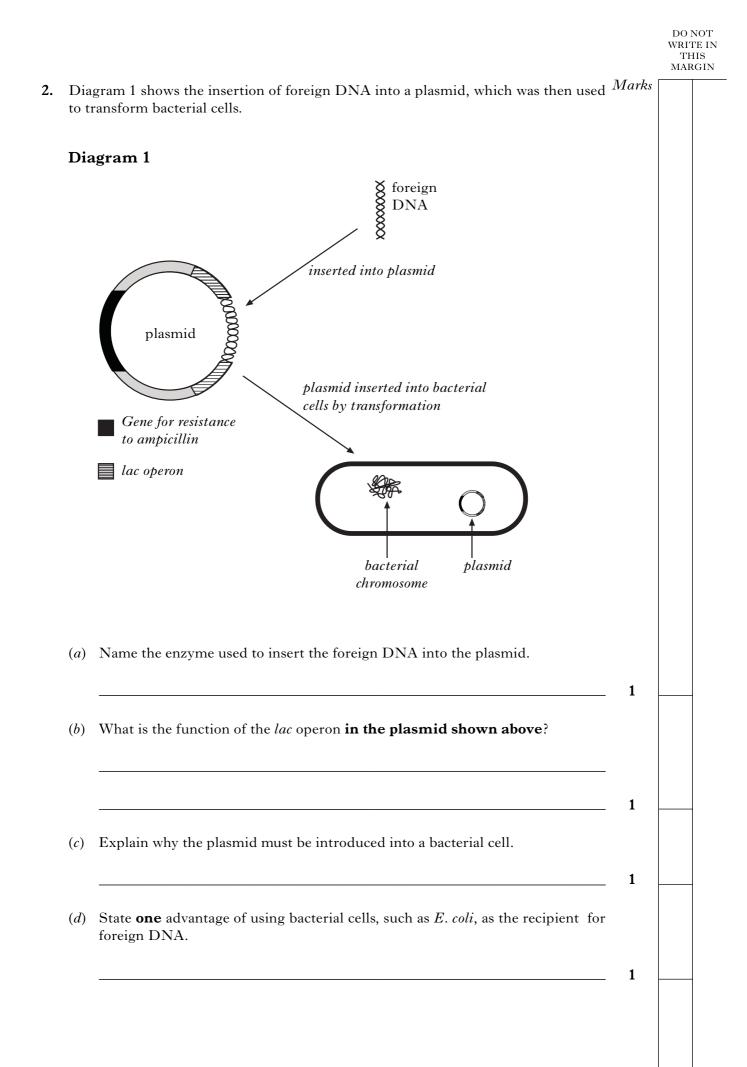
1. (continued)

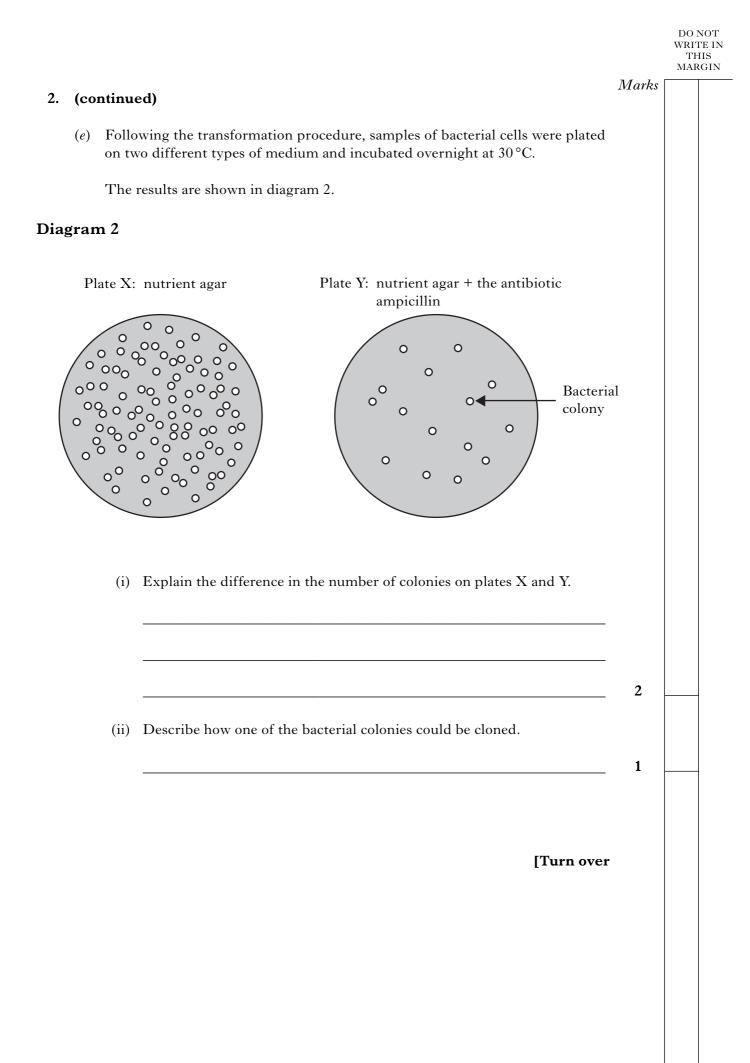
(b) The number of yeast cells in a solution can be estimated using a haemocytometer. The diagram below shows one square from a haemocytometer containing a yeast suspension.

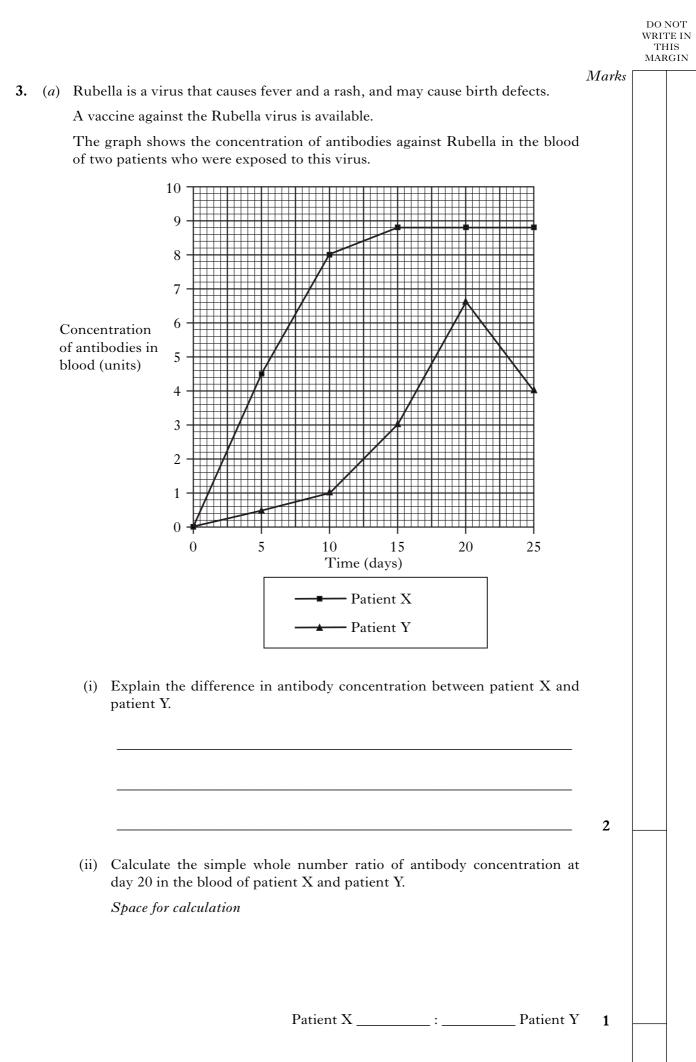
(i) How many yeast cells should be counted in the big square?

_____ yeast cells

(ii) The instructions for **this haemocytometer** state that the number of cells counted should be multiplied by 10^4 to give the number of cells per cm³.


If the yeast suspension used in this experiment had been diluted 1 in 10 before being added to the haemocytometer, how many cells per cm³ were in the undiluted yeast suspension?


Space for calculation


1

1

[Turn over

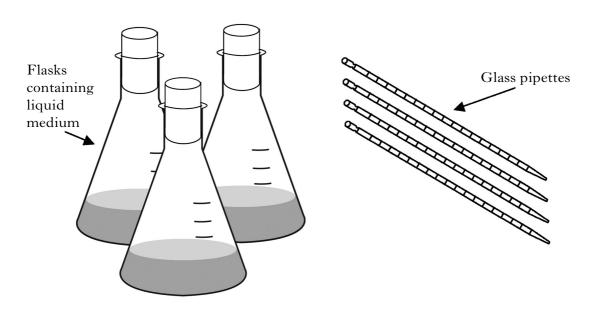
3. (a) (continued)

(iii) By how many times does the antibody concentration in the blood of patient Y increase between days 5 and 15?

 $Space \ for \ calculation$

(b) Match each description with the type of immunity by ticking (✓) the two correct boxes in each line of the table.

	Type of Immunity				
Description	Naturally acquired	Artificially acquired	Passive	Active	
Receiving anti-rabies antibodies					
Baby receiving immunity from mother					
Recovery from viral infection					
Vaccination against polio					

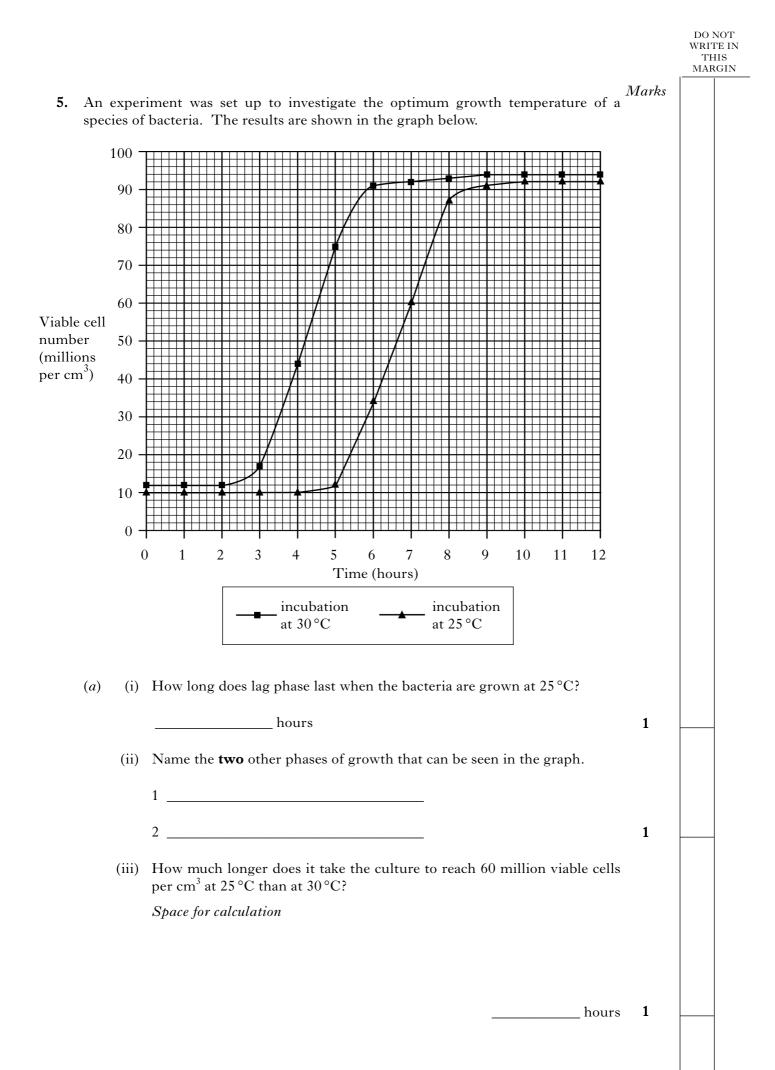

3

[Turn over

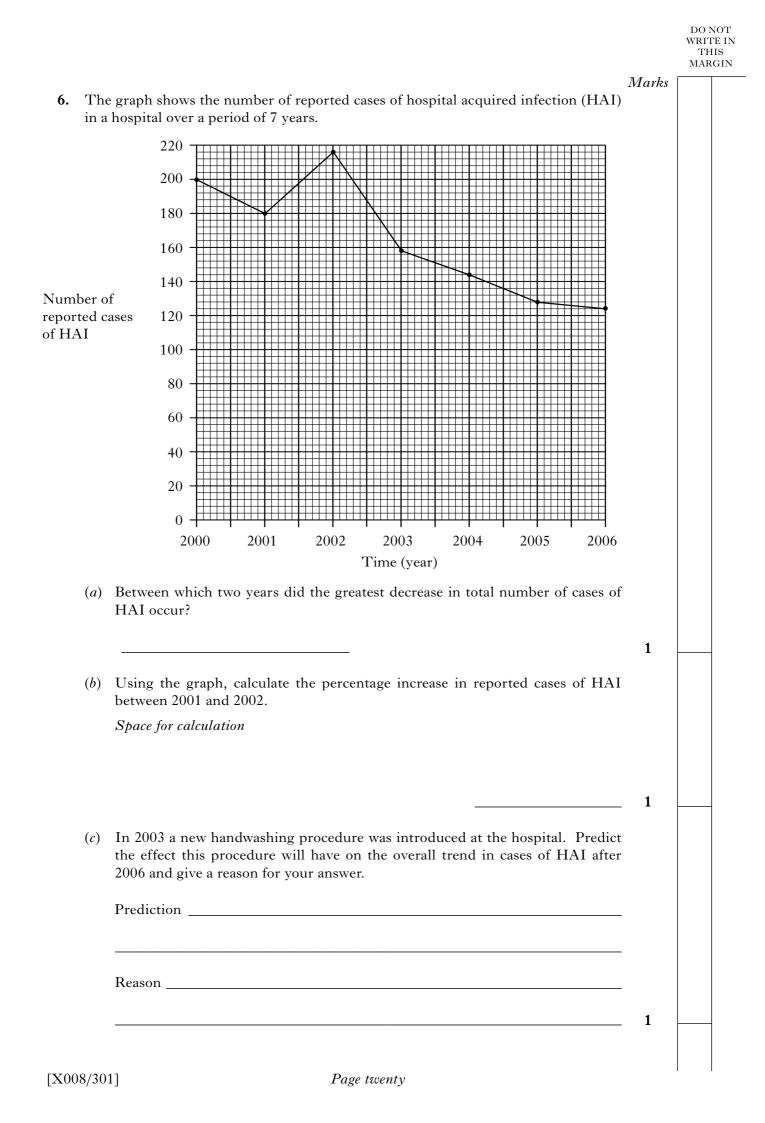
THIS MARGIN

1

DO NOT WRITE IN 4. A microbiologist prepared flasks of sterile liquid medium and sterile glass pipettes for an experiment.


(a) (i) Complete the table to show the method, temperature and time of sterilisation for these items.

	Method of sterilisation	Temperature (°C)	Time of sterilisation
Flasks containing medium			
Glass pipettes			


(ii) What would the microbiologist use to check that sterilisation was successful?

1

				Marks [DO NOT WRITE IN THIS MARGIN				
4.	(coi	(continued)							
	(<i>b</i>)		The experiment also required a solution of glucose which was prepared from a rock solution.						
		(i)	The solution of glucose would be damaged by heat sterilisation. Suggest how this solution could be sterilised.						
				1					
		(ii)	If the concentration of the glucose stock solution was 0.5 M , what volumes of stock solution and water would be required to prepare 100 cm^3 of 0.1 M glucose?						
			Space for calculation						
			cm ³ stock solution cm ³ water	1					
	(<i>c</i>)		re starting the experiment the microbiologist carried out a risk assessment the procedures to be used. Hazards were identified and the associated risk sed.						
		(i)	Describe what is meant by the term "risk".						
				1					
		(ii)	One of the procedures was covered by a generic risk assessment. Describe what is meant by this term.						
				1					
		(iii)		•					
			1						
			2	2					
			[Turn over						

5.		ntinued)	Marks	DO NOT WRITE IN THIS MARGIN
	(<i>b</i>)	Explain what is happening to the cells in the cultures after 9 hours.		
			2	
	(<i>c</i>)	Suggest a reason why the cells grow more rapidly at 30°C than at 25°C.		
			1	
		[Turn over		

Marks

6. (continued)

The table below shows the percentage of cases of HAI in the hospital caused by two species of bacteria over the same 7 year period.

	Percentage of cases of HAI in each year (%)						
	2000	2001	2002	2003	2004	2005	2006
Clostridium	31	30	32	30	54	57	59
Staphylococcus	34	31	33	32	31	33	33

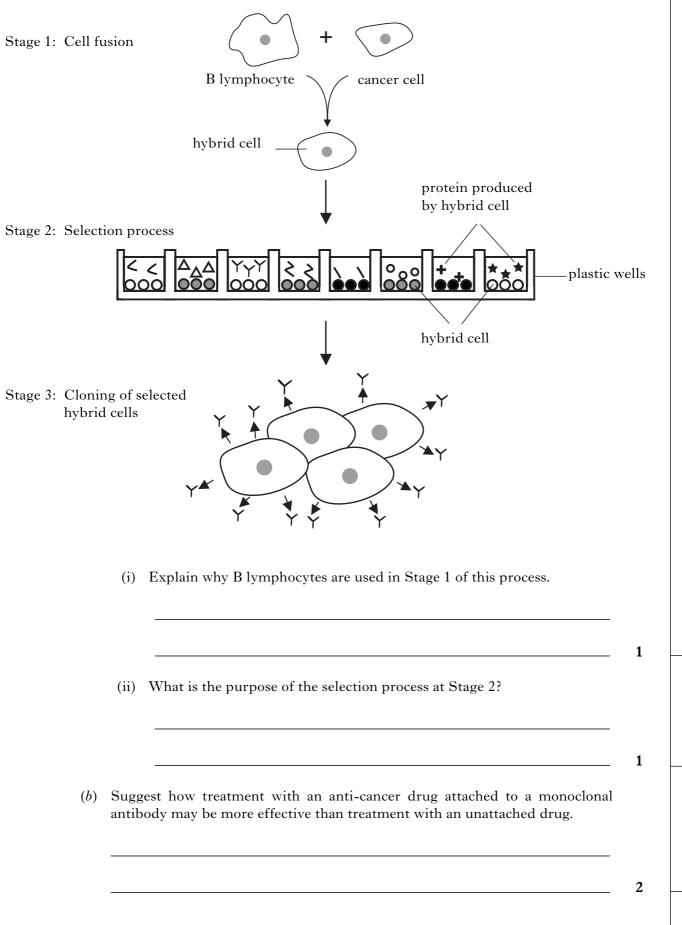
(d) Using the graph and the table, calculate the number of cases of HAI caused by *Clostridium* species in 2001.

Space for calculation

(e) Compare the overall trend in the percentage of *Clostridium* cases over the 7 year period with that of *Staphylococcus* cases.

1

1


(f) Using the graph and table, what conclusion can be drawn about the effectiveness of the new handwashing procedure on the number of cases of *Staphylococcus* species?

1

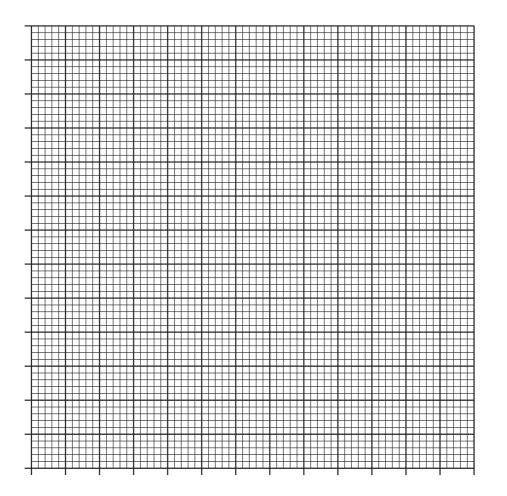
(g) Some cases of HAI are caused by spore forming bacteria. Explain why it is more difficult to reduce the number of cases of infection caused by these bacteria.

				DO NOT WRITE IN THIS MARGIN
	-	ties of bacteria were isolated from an environmental sample and stored as ures until identification tests could be carried out.	Marks	
-		cribe how an agar slope should be prepared.		
			2	
(<i>b</i>)	The medi	identification process included plating the bacteria on differential	_	
	(i)	What factors must be considered when selecting a plate suitable for inoculation?		
	(ii)	Describe how differential medium distinguishes between bacterial species.	1	
(<i>c</i>)		bacteria were also grown on a medium that contained only defined itional ingredients in precise concentrations.	1	
	(i)	What name is given to this type of medium?		
	(ii)	What is added to the medium to prevent the pH changing during growth of the bacteria?	1	
			1	

8. (a) The diagram below shows the stages involved in the production of Marks monoclonal antibodies.

9. The growth requirements of animal cells were investigated by growing the cells in *Marks* two bioreactors.

Bioreactor M contained growth medium.


Bioreactor N contained growth medium plus serum.

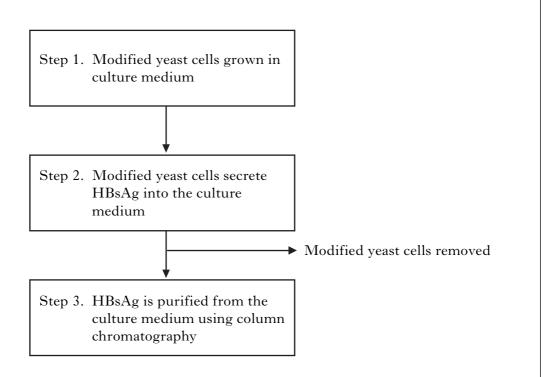
Samples were taken from the bioreactors each day for six days and cell counts were carried out. The results are shown in the table below.

Days in Culture	Bioreactor M Average number of cells per cm ³ (× 10 ⁵)	Bioreactor N Average number of cells per cm ³ (× 10 ⁵)
0	4.0	4.0
1	5.0	5.0
2	5.0	9.5
3	3.5	10.0
4	2.5	14.5
5	1.5	26.5
6	0.5	30.0

(a) Plot line graphs of the average number of cells against days in culture for bioreactors **M and N**.

(Additional graph paper, if required, can be found on page 35.)

					DO NOT WRITE IN THIS MARGIN
9.	(co	ntinu	ed)	Marks	
	(<i>b</i>)	(i)	State the conclusion that can be drawn from this data.		
				1	
		(ii)	Between which two days did the number of cells in Bioreactor N show the greatest increase?		
				1	
	(<i>c</i>)		ribe two precautions to prevent contamination that must be taken when ng up the bioreactors.		
		1			
		2		2	
	(d)	Expl	ain why serum was not added to Bioreactor M.		
				1	
	The	e cells	in this experiment were grown in batch culture.		
	(<i>e</i>)	(i)	Describe what is meant by batch culture.		
				1	
		(ii)	State one advantage of growing cells in batch culture.		
				1	


[Turn over

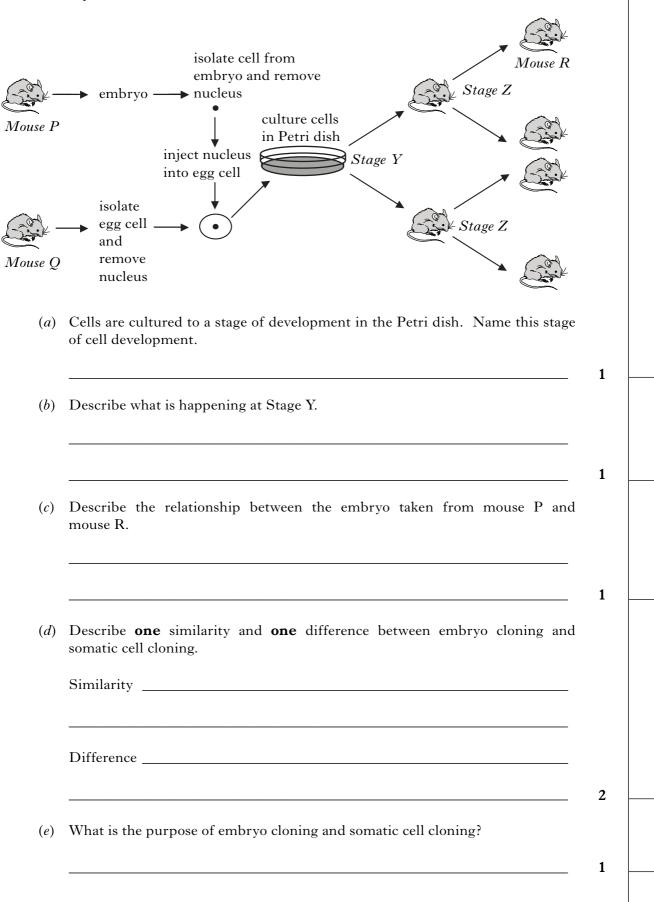
10. The Hepatitis B virus has a surface protein called HBsAg. HBsAg is used to vaccinate humans against Hepatitis B.

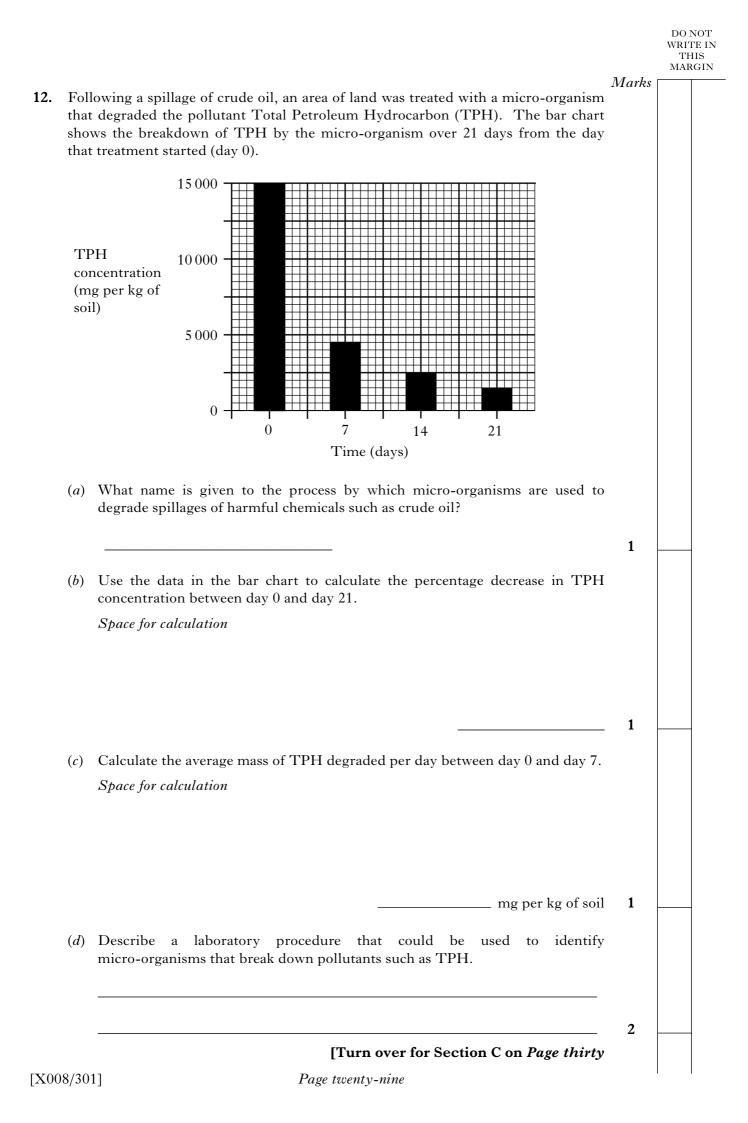
Yeast cells were genetically modified to synthesise and secrete HBsAg.

Some of the steps involved in production of HBsAg using these modified yeast cells are shown below.

(a) (i) Describe how the modified yeast cells could be removed from the culture medium.

1

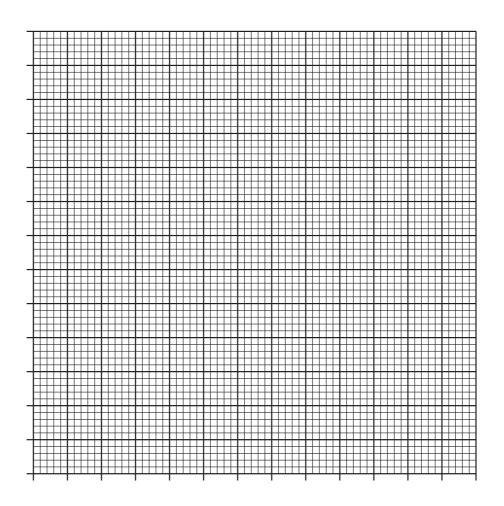

(ii) Step 3 involves protein purification by column chromatography. Name two properties of the protein that could be used to purify it by this method.


				DO NOT WRITE IN THIS MARGIN	
10.	(co	Marks			
	(<i>b</i>)	HBsAg was originally purified from the plasma of individuals infected with Hepatitis B virus and used as a vaccine.			
		Explain why the vaccine produced using HBsAg from genetically modified yeast is more suitable.			
			1		
	(<i>c</i>)	Give a reason why yeast cells are used to produce HBsAg instead of bacterial cells.			
			1		
	(<i>d</i>)	Give two factors that should be considered when scaling up a process from a laboratory model to an industrial fermenter.			
		1			
		2	2		

[Turn over

Marks

11. Embryo cloning has been developed for many mammals including mice. An outline of this process is shown below.



				DO NOT WRITE IN THIS MARGIN
		SECTION C	Marks	
		Both questions in this section should be attempted.		
		Note that each question contains a choice.		
Qu	estion	is 1 and 2 should be attempted on the blank pages which follow.		
		All answers must be written clearly and legibly in ink.		
Sup	pleme	entary sheets, if required, may be obtained from the invigilator.		
		Labelled diagrams may be used where appropriate.		
4				
1. Ar A.		either A or B.		
А.		lings:		
	<i>(a)</i>	production of transgenic plants and animals;	4	
	<i>(b)</i>	crop protection.	6	
OI	ર		(10)	
B.		e an account of the application of immobilised enzymes in biotechnology er the following headings:		
	<i>(a)</i>	methods for immobilising enzymes;	3	
	<i>(b)</i>	advantages of immobilising enzymes;	2	
	(<i>c</i>)	therapeutic and industrial applications of immobilised enzymes.	5 (10)	
In Ques for relev		ONE mark is available for coherence and ONE mark is available		
2. Ar	iswer (either A or B.		
А.	mR] diffe	xaryotes and eukaryotes both carry out transcription (synthesis of NA) and translation (synthesis of protein). Describe the similarities and erences between prokaryotes and eukaryotes in the way they carry out e processes.	(10)	
OI	ર			
B.		e an account of the purification and fragmentation of DNA, and the ration of the fragments produced.	(10)	
		[END OF QUESTION PAPER]		

SPACE FOR ANSWERS

ADDITIONAL GRAPH PAPER FOR USE IN QUESTION 9 (a)

[BLANK PAGE]