2012 Biology

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

GENERAL MARKING ADVICE: BIOLOGY

The marking schemes are written to assist in determining the 'minimal acceptable answer' rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessment and course assessments.

1. There are no half marks. Where three answers are needed for two marks, normally one or two correct answers gain one mark.
2. In the mark scheme, if a word is underlined then it is essential; if a word is (bracketed) then it is not essential.
3. In the mark scheme, words separated by / are alternatives.
4. If two answers are given which contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied. Good marking schemes should cover these eventualities.
5. Where questions in data are in two parts, if the second part of the question is correct in relation to an incorrect answer given in the first part, then the mark can often be given. The general rule is that candidates should not be penalised repeatedly.
6. If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, candidates should not be penalised repeatedly.
7. Clear indication of understanding is what is required, so:

- if a description or explanation is asked for, a one word answer is not acceptable
- if the question ask for letters and the candidates gives words and they are correct, then give the mark
- if the question asks for a word to be underlined and the candidate circles the word, then give the mark
- if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
- chemical formulae are acceptable eg $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
- contractions used in the Arrangements document eg DNA, ATP are acceptable
- words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis.

8. Incorrect spelling is given. Sound out the word(s),

- if the correct item is recognisable then give the mark
- if the word can easily be confused with another biological word then do not give the mark eg ureter and urethra
- if the word is a mixture of other biological words then do not give the mark, eg melluym, melebrum, amniosynthesis.

9. Presentation of data:

- if a candidate provides two graphs or bar charts (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if the question asks for a line graph and a histogram or bar chart is given, then do not give the mark(s). Credit can be given for labelling the axes correctly, plotting the points, joining the points either with straight lines or curves (best fit rarely used)
- if the x and y data are transposed, then do not give the mark
- if the graph used less than 50% of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. (For information: bar charts should be used to show discontinuous features, have descriptions on the x axis and have separate columns; histograms should be used to show continuous features; have ranges of numbers on the x axis and have contiguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be given 7.3 ± 0.1.

10. Extended response questions: if candidates give two answers where this is a choice, mark both and give the higher score.
11. Annotating scripts:

- put 0 in the box if no marks awarded - a mark is required in each box
- indicate on the scripts why marks were given for part of a question worth 3 or 2 marks.
A \checkmark or X near the answers will do.

12. Totalling scripts: errors in totalling can be more significant than errors in marking:

- enter a correct and carefully checked total for each candidate
- do not use running totals as these have repeatedly been shown to lead to more errors.

2012 Biology Intermediate 2

Section A

1.	C	11.	D	21.	A
2.	B	12.	A	22.	C
3.	C	13.	D	23.	A
4.	D	14.	D	24.	C
5.	C	15.	B	25.	B
6.	A	16.	B		
7.	C	17.	D		
8.	A	18.	D		
9.	B	19.	B		
10.	A	20.	A		

Marking Instructions

Biology Intermediate 22012
Section B

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
(a) (i) (ii) (b) (i) (ii)	lactic acid / lactate yoghurt/cheese/fermented milk drink yeast/fungus (alcohol) mixed with petrol / gasoline to form gasohol OR mixed with vegetable oil to form biodiesel	1 1 1 1 1 OR 1 1	brand names, curds any reference to combustion, gas, fuel	any additional answer

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
(a) (b) (i) (ii)	mass of substrate/enzyme volume of substrate/enzyme concentration of substrate/enzyme same substrate/enzyme temperature time left to run size of test tube Any two Only 1 from each line (pH) 8 5 (times)	2 1 1	amount/measure/quantity percentage volume of solution pH time (single word)/time taken	

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
4 (a) (b) (c) (d)	selectively/semi permeable/has pores OR idea of B and D Both (blotted) dry B has the greatest difference in concentration/concentration gradient	1 1 1 1	permeable wiping only restating concentrations from the diagram greatest difference in glucose concentration greatest difference in percentage greatest difference in concentration of solution	additional letter(s)

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
5 (i) (ii) (iii) (iv) (v) (b)	correct scale on x-axis and correct scale on y axis (more than 50% each axis used) correct plots and joined number of seeds (sown) the higher the competition, the lower the \% of seedlings surviving 4:3 55(\%) light/nutrients/space (any other correct) Any one	1 1 1 1 1 1 1	seedlings lower percentage seedlings surviving leads to higher competition seeds/plants surviving carbon dioxide	food

Page 10

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
$7 \quad$ (a) (b) (c) (d)	bacterial cell E insulin gene C plasmid D All 3= plasmid replicated/reproduced/copied/ duplicated OR bacteria/cell multiplied/reproduced/divided growth hormone (any other correct) increased range of products/increased rate of production/produced quicker large/increased volume/mass of product (or named example)/ lower cost of production/ less/no allergy to product OR an example of moral/ethical issue e.g. product made without killing animals/without infection from human donors	$\begin{aligned} & 2 \\ & 1 \end{aligned}$ 1 1	grow mitosis GH cheap/quicker process guaranteed product	

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
(a) (b) (i) (ii) (c)	Both meiosis Matching/homologous chromosomes pair/random assortment (matching) pairs separate into different cells/single sets/chromosome number halved zygote nuclei fuse	1 1 1 1 2	shuffling	

Question	Acceptable Answer			Mark	Unacceptable Answer	Negates
$\begin{array}{lll}9 & \text { (a) } & \text { (i) } \\ & & \\ & \text { (ii) } \\ & & \text { (iii) } \\ & \text { (b) } & \end{array}$	lymphocyte/B cells			1		
	red blood cells/haemoglobin			1	RBCs	
	oxyhaemoglobin			1		
	\% oxygen (in blood) will fall from 91% to $80 \% /$ by 11%			1		
	less oxygen	causes/ so	more lactic acid/faster production of lactic acid		Oxygen debt	
	less		less muscle contraction			
	Answer to include one from each column					

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
11 (a) (b) (i) (ii)	A trachea/windpipe B bronchus/bronchi C bronchioles All 3= diffusion thin walled/large surface area/numerous/ moist (lining)/good blood supply/in close contact with capillaries/moisture layer/one cell thick lining/network of capillaries	2 1 1 any 2	they are one cell thick have thin cell walls very thin good surface area large SA	

Section C

Question 1A

N1 any correct named enzyme and substrate
E1 enzyme has active site
E2 enzyme lowers energy input/speeds up chemical reactions

E3 active site is specific/complementary fit/lock and key
Max 2 enzyme-substrate complex

E4 enzyme unchanged at end/can be reused

S1 substrate broken down into smaller/more soluble molecules
S2 named products
S3 products released from enzyme/active site

Max 5

Question 1B

P1 light (energy) from lamp absorbed by Elodea/plant/chlorophyll/ chloroplast
P2 energy used to split water
Max 3
P3 into H and O
P4 energy used to produce ATP

C1 $\quad \mathrm{CO}_{2}$ in water joins with H
C2 using (energy from) ATP
C3 to form glucose
Max 3
C4 glucose molecules joined to produce starch (any conversion)
C5 enzyme controlled
Max 5

Question 2A

M1 muscles contract and relax
M2 mix/churn food with gastric juices/enzymes/acid/pepsin
M3 physical breakdown of food/smaller pieces/bigger surface area

Max 2

Max 2
CA2 optimum pH for pepsin/enzyme activity
CA3 pepsin/enzyme digest protein
CA4 acid activates pepsin (ogen)
CM1 mucus coats/lines stomach wall
CM2 to prevent/protect from damage/digestion by acid/enzyme
Max 5

Question 2B

B1 hypothalamus/brain detects rise in blood temperature
B2 hypothalamus receives nerve impulses from skin/thermo receptors OR hypothalamus sends nerve impulses to skin
B3 negative feedback
B4 any voluntary response to reduce body temperature

S1 increased sweating/sweat glands stimulated
S2 increases heat loss by evaporation
S3 blood vessels/arterioles dilate/vasodilation
Max 3
S4 increasing blood flow to skin/surface vessels
S5 increasing heat loss by radiation
S6 hairs lie flat so less air trapped

Max 2

