2011 Biology

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

GENERAL MARKING ADVICE: BIOLOGY

The marking schemes are written to assist in determining the 'minimal acceptable answer' rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessment and course assessments.

1. There are no half marks. Where three answers are needed for two marks, normally one or two correct answers gain one mark.
2. In the mark scheme, if a word is underlined then it is essential; if a word is (bracketed) then it is not essential.
3. In the mark scheme, words separated by / are alternatives.
4. If two answers are given which contradict one another the first answer should be taken. However, there are occasions where the second answer negates the first and no marks are given. There is no hard and fast rule here, and professional judgement must be applied. Good marking schemes should cover these eventualities.
5. Where questions in data are in two parts, if the second part of the question is correct in relation to an incorrect answer given in the first part, then the mark can often be given. The general rule is that candidates should not be penalised repeatedly.
6. If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, candidates should not be penalised repeatedly.
7. Clear indication of understanding is what is required, so:

- if a description or explanation is asked for, a one word answer is not acceptable
- if the question ask for letters and the candidates gives words and they are correct, then give the mark
- if the question asks for a word to be underlined and the candidate circles the word, then give the mark
- if the result of a calculation is in the space provided and not entered into a table and is clearly the answer, then give the mark
- chemical formulae are acceptable eg $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
- contractions used in the Arrangements document eg DNA, ATP are acceptable
- words not required in the syllabus can still be given credit if used appropriately eg metaphase of meiosis.

8. Incorrect spelling is given. Sound out the word(s),

- if the correct item is recognisable then give the mark
- if the word can easily be confused with another biological word then do not give the mark eg ureter and urethra
- if the word is a mixture of other biological words then do not give the mark, eg melluym, melebrum, amniosynthesis.

9. Presentation of data:

- if a candidate provides two graphs or bar charts (eg one in the question and another at the end of the booklet), mark both and give the higher score
- if the question asks for a line graph and a histogram or bar chart is given, then do not give the mark(s). Credit can be given for labelling the axes correctly, plotting the points, joining the points either with straight lines or curves (best fit rarely used)
- if the x and y data are transposed, then do not give the mark
- if the graph used less than 50% of the axes, then do not give the mark
- if 0 is plotted when no data is given, then do not give the mark (ie candidates should only plot the data given)
- no distinction is made between bar charts and histograms for marking purposes. (For information: bar charts should be used to show discontinuous features, have descriptions on the x axis and have separate columns; histograms should be used to show continuous features; have ranges of numbers on the x axis and have contiguous columns)
- where data is read off a graph it is often good practice to allow for acceptable minor error. An answer may be given 7.3 ± 0.1.

10. Extended response questions: if candidates give two answers where this is a choice, mark both and give the higher score.
11. Annotating scripts:

- put 0 in the box if no marks awarded - a mark is required in each box
- indicate on the scripts why marks were given for part of a question worth 3 or 2 marks.
A \checkmark or X near the answers will do.

12. Totalling scripts: errors in totalling can be more significant than errors in marking:

- enter a correct and carefully checked total for each candidate
- do not use running totals as these have repeatedly been shown to lead to more errors.

2011 Biology Intermediate 2

Section A

1.	D	11.	B	21.	C
2.	B	12.	C	22.	D
3.	C	13.	A	23.	A
4.	D	14.	A	24.	B
5.	A	15.	C	25.	A
6.	D	16.	C		
7.	B	17.	A		
8.	C	18.	D		
9.	B	19.	B		
10.	D	20.	B		

Section B

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
(ii) (b) (c)	$\begin{aligned} & X=\text { (sap) vacuole } \\ & Y=\text { cytoplasm } \end{aligned}$ Both for 1 mark stores genetic information/DNA/chromosomes controls cell activity(ies)/function(s) (potato/starch) phosphorylase D = only plants have a cell wall/chloroplast/ vacuole $\mathrm{S}=$ both have membranes/cytoplasm/nuclei [Must have a comparison]	1 1 1 1 1	controls the cell (reactions) controls all cell activities stores all DNA	

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
2 (a) (b)	fungi carbon dioxide $3=2$ marks $2 / 1=1$ mark (bacteria) convert lactose to lactic acid lactic acid clots milk/causes curdling	2 1 1	thickens	Any enzyme or fungi

Page 7

Page 11

	Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
	(a)	stomach (1) and small intestine (1) (any order)	2		
	(b) (i)	2000	1		
	(ii)	67/66.7/66 ${ }^{2 /}{ }_{3}$	1	66/66.6	

Question	Acceptable Answer	Mark	Unacceptable Answer	Negates
$\mathbf{9}$ (a)	it increases then decreases maximum/optimum/highest/change at pH8	$\mathbf{1}$	depth of jelly optimum temperature	
(b)	depth of clear jelly will be less than 2 mm/any value less than 2mm (c) lipase lamylase peptidase (any order)	$\mathbf{1}$	protease	

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Acceptable Answer \& Mark \& Unacceptable Answer \& Negates \\
\hline \begin{tabular}{l}
12 (a) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
[mark awarded only if correct one-to-one relationship]
\[
\begin{gathered}
3=2 \text { marks } \\
2 / 1=1 \text { mark }
\end{gathered}
\] \\
1. sensory \\
2. relay/association/interneurone \\
3. motor \\
3/2 correct names = 1 mark All 3 in correct order = 1 mark \\
provides a rapid response/
\end{tabular} \& 2

2
1 \& Protection/rapid Prevents harm example on its own \& Two lines from one part

\hline
\end{tabular}

Section C

Question 1A

N1 X is a pyramid of numbers MAX 1
N2 oak tree few/one

N3 caterpillar more numerous than oak
N4 any correct number relationship between hawk and thrush or caterpillar and thrush
N5 numbers decrease moving along the food chain (caterpillar to hawk)
N6 any correct description of 'block' sizes (if E6 not awarded))
MAX 2

MAX 2
E1 oak tree has highest energy
E2 correct position of any organism in the pyramid
E3 caterpillar/thrush/hawk level has less energy than any level below
E4 energy used/decreases/lost at each stage
E5 (energy lost by) movement/heat/waste products (or any other correct)
E6 any correct description of 'block' sizes (if N6 not awarded)

Total 5

Question 1B

M1 Cell A sperm/male gamete/male sex cell
M2 (matching/homologous) chromosomes pair or random assortment
M3 produces variation (if F5 not awarded)
MAX 2
M4 double set/2 sets/diploid/46 chromosomes
M5 pairs separate
M6 gametes/sex cell 1 set/haploid/23/ half the number of chromosomes
M7 four gametes/sex cells produced
F1 gametes/sex cells fuse
F2 any correct description of fusion of gamete/sex cell nuclei (must indicate male/female)

MAX 1

F3 to form a zygote
F4 this is a random process
F5 produces variation (if M3 not awarded)
F6 \quad X sperm produce female offspring/Y sperm produce male offspring
F7 zygote contains/restores 2 sets/diploid/46 chromosomes

Total 5

Question 2A

G1 overall equation [not under stage 1]
G2 first stage is glycolysis
G3 enzyme controlled (if K1 not awarded)
G4 glucose is broken down/used/raw material
MAX 3
G5 pyruvic acid is produced
G6 2 ATP produced
G7 anaerobic stage/no oxygen needed
K1 second stage enzyme controlled (if G3 not awarded)
K2 pyruvic acid used/raw material
K3 oxygen used/raw material
MAX 3
K4 36 ATP produced/total 38 ATP produced
K5 carbon dioxide and water produced
Total 5

Question 2B

P1 overall equation [including light and chlorophyl/[[not under stage 1]
P2 first stage is photolysis/light reaction
P3 enzyme controlled (if C2 not awarded)
P4 light energy trapped by chlorophyll
P5 water is broken down/used/raw material
P6 oxygen is released/produced
MAX 3
P7 ATP/hydrogen is produced
P8 ATP/hydrogen is passed to second stage
C1 second stage is carbon fixation/Calvin's cycle/light independent reaction
C2 enzyme controlled (if P3 not awarded)
C3 carbon dioxide is used/raw material
C4 ATP provides energy/hydrogen used
MAX 3
C5 hydrogen added to carbon dioxide
C6 glucose is produced
Total 5
[Diagram only answers no direction/stage indicated = no marks]

