\square

0300/402

NATIONAL
QUALIFICATIONS 2008

TUESDAY, 27 MAY
10.50 AM - 12.20 PM

BIOLOGY
STANDARD GRADE Credit Level

Fill in these boxes and read what is printed below.

Full name of centre

Forename(s)

Date of birth

Scottish candidate number

Town

Surname

Number of seat

1 All questions should be attempted.
2 The questions may be answered in any order but all answers are to be written in the spaces provided in this answer book, and must be written clearly and legibly in ink.

3 Rough work, if any should be necessary, as well as the fair copy, is to be written in this book. Additional spaces for answers and for rough work will be found at the end of the book. Rough work should be scored through when the fair copy has been written.

4 Before leaving the examination room you must give this book to the invigilator. If you do not, you may lose all the marks for this paper.

1. (a) A comparison was made between the types of invertebrate animals living on the branches and leaves on an oak tree with those living on a beech tree.

Samples were collected as shown below.

(i) Give two variables which should be kept constant to make the comparison valid when using this technique.

1 \qquad
2 \qquad
(ii) The samples collected were not representative of all the invertebrates living on the trees. Suggest a reason for this.
(iii) Measurement of abiotic factors such as light intensity may be recorded at the same time as sampling. Identify a possible source of error for a named measurement technique and explain how it might be minimised.

Measurement technique \qquad
Source of error \qquad

How to minimise it \qquad

1. (continued)

(b) An investigation was carried out into the effect of light intensity on the distribution of a plant species. At eight different measurement points in a garden, the average light intensity was measured and the percentage ground cover of the plant was recorded.

The results are shown below.

Measurement points	Ground cover of the plant (\%)
1	85
2	65
3	20
4	20
5	30
6	35
7	100
8	90

DO NOT
WRITE IN
THIS
(i) 1 What is the light intensity in the garden where the ground cover of the plant was 100% ?
\qquad lux

2 What was the percentage ground cover of the plant when the light intensity was 750 lux?
\qquad
(ii) What is the relationship between light intensity and percentage ground cover of the plant?
\qquad
\qquad
(c) Explain how light intensity affects the distribution of the plants in the garden.
\qquad
\qquad

2. (a) The diagram shows part of a food web from a forest.

(i) The numbers of dormice and owls may be affected if the chaffinches were removed from the food web.

1 Underline one answer in the brackets and give an explanation.
The dormouse population would $\left\{\begin{array}{l}\text { increase } \\ \text { decrease } \\ \text { stay the same }\end{array}\right\}$.

Explanation \qquad

2 Underline one answer in the brackets and give an explanation.
The owl population would $\left\{\begin{array}{l}\text { increase } \\ \text { decrease } \\ \text { stay the same }\end{array}\right\}$.

Explanation \qquad
\qquad
(ii) Select a food chain from the web which is made up of four stages.
\qquad
 Marks

2. (continued)

(b) A food chain from the ocean is shown below.
plankton \longrightarrow krill \longrightarrow blue whale

Which population in the food chain has the smallest biomass?
3. (a) The grid contains the names of some components of food.

carbon	A	hydrogen ${ }^{\text {B }}$		$\begin{array}{l\|l} \underset{\text { amino }}{\text { amids }} & \mathrm{C} \\ \end{array}$	
nitrogen	D	simple sugar	E	glycer	F
fatty acids	G	oxygen	H	water	I

Use letters from the grid to identify the following:
(i) The sub-units of protein molecules \qquad 1
(ii) The sub-units of fat molecules \qquad and \qquad
(iii) An element found in protein but not in starch \qquad 1
(b) Name the structures in the small intestine which provide an increased surface area for absorption.
\qquad
(c) Urea is produced in the liver from the breakdown of digested food molecules. From which food molecules is urea produced?
\qquad
4. (a) The diagram shows part of the human breathing system.

Describe the function of the cartilage rings.
(b) (i) Name the sticky substance that traps inhaled dust particles.
\qquad
(ii) Explain how the trapped particles are removed from the breathing system.
\qquad
\qquad
(c) As blood passes through capillary networks in the lungs, oxygen and carbon dioxide are exchanged between the blood and the air sacs.
(i) Describe one feature of a capillary network which allows efficient gas exchange.
\qquad
\qquad
(ii) Name the structures in blood that contain haemoglobin.
\qquad
(iii) Explain the function of haemoglobin in the transport of oxygen.
\qquad

1
1

1

1

5. (a) The diagram represents phloem tissue from the stem of a plant.

(i) Name Structure A and Cell B.

Structure A \qquad

Cell B \qquad
(ii) State the function of phloem.
\qquad
(b) (i) Name the leaf tissue where stomata are found.
\qquad 1
(ii) Name the cells which control the opening and closing of stomata.
\qquad 1

5. (continued)

(c) Leaves were placed in tubes as shown below.

The tubes were left in bright light.

Tube 1

Tube 2

Tube 3

For each of the tubes, tick $(\boldsymbol{\checkmark})$ the appropriate box in the table to indicate which processes will take place in the leaves.

Tube Process	Only photosynthesis	Only respiration	Both	Neither
1				
2				
3				
4				

2
[Turn over
6. (a) The graph shows the number of kidney transplants carried out and the number of patients waiting for a transplant in the UK between 1996 and 2005.

6. (a) (continued)
(ii) Calculate the simple whole number ratios of patients waiting for a transplant to the number of kidney transplants carried out for 1996 and for 2005.

Space for calculation.

1996 \qquad : \qquad

2005

patients waiting for a transplant		transplants carried out

(iii) The following statements refer to the data in the graph.

Tick (\boldsymbol{J}) the box(es) of the correct statement(s).

The number of patients waiting for a transplant increased every year.

The number of transplants carried out decreased every year.

The difference between the number of patients waiting for a transplant and the number of transplants carried out increased every year.

(b) Give one advantage and one disadvantage of treating kidney failure by transplant compared to treatment using a dialysis (kidney) machine.

Advantage \qquad

Disadvantage \qquad
\qquad

1

1

7. An investigation was carried out into the effect of the mineral boron on the growth of young trout.
Immediately after fertilisation, trout eggs were placed in distilled water containing different concentrates of boron.

After hatching, young trout survive on food from their yolk sac for a maximum of four weeks. The graph below shows the average lengths of the young trout three weeks after hatching.

(a) Describe the relationship between boron concentration and the length of the young trout.
\qquad
\qquad
(b) Calculate the percentage change in the average fish length when the boron concentration is increased from 1 micromole per litre to 10 micromoles per litre.
Space for calculation.
\qquad \%

(c) Distilled water is the purest form of water available. Give a reason for using distilled water in this investigation.
\qquad
\qquad
(d) Explain why the results would not be valid if the fish were measured more than four weeks after hatching.
\qquad
\qquad
8. An investigation was carried out into the effect of water concentration on the rate of osmosis.

Details of the apparatus, method used and results are given below.

Method

1 A thistle funnel containing $50 \mathrm{~cm}^{3}$ of $0 \cdot 5 \%$ sugar solution was covered with selectively permeable membrane.
2 The funnel was placed in a beaker of pure water.
3 The scale was positioned with the sugar solution at zero on the scale.
4 The position of the sugar solution was recorded after 30 minutes.
5 The procedure was repeated using $1 \cdot 0 \%, 2 \cdot 0 \%$ and $3 \cdot 0 \%$ sugar solutions.

Results

Concentration of sugar solution $(\%)$	Distance moved by sugar solution in 30 minutes (mm)
0.5	4.5
1.0	9.0
2.0	18.0
3.0	27.0

8. (continued)

(a) Identify two variables not already mentioned that should be kept constant when setting up the investigation.

1 \qquad

2 \qquad
(b) Explain the movement of the sugar solution in terms of water concentrations.
\qquad
\qquad
(c) From the results, predict the distance moved by a $3 \cdot 5 \%$ sugar solution in 30 minutes and justify your prediction.

Prediction \qquad mm

Justification \qquad
\qquad

2

1

1

[Turn over
9. (a) The diagram below contains some of the stages of cell division by mitosis.

Describe Stages 2 and $\mathbf{5}$ in the spaces provided.

Stage 1

Chromosomes become visible as pairs of identical chromatids.

Stage 2

Stage 3
The spindle fibres contract pulling the chromatids of each chromosome to opposite poles of the cell.

\downarrow

Stage 4
A nuclear membrane forms around each nucleus.

(b) Mitosis ensures that all daughter cells in a multicellular organism have the same number and type of chromosomes.
Explain why this is necessary.
\qquad
\qquad
10. (a) Barley is a plant grown for use in the brewing industry. The photographs below show two varieties of barley that have been produced by selective breeding.

Describe one difference between these two varieties of barley.
\qquad
\qquad
(b) (i) Explain why barley must be malted before use in the brewing process.
\qquad
\qquad
(ii) Describe how brewers ensure that the yeast carries out fermentation on the sugars extracted from the malted barley.
\qquad
11. (a) The photograph shows a child with dimples. Dimples are small indentations in the cheeks. Their presence is controlled by a single gene which has two forms. The dominant form (D) gives dimples. The recessive form (d) gives no dimples.

(i) What name is given to different forms of the same gene?
(ii) The parents of the child are known to have the following genotypes.

DD \times dd

Underline one option in each bracket to make the following sentence correct.
The parents have $\left\{\begin{array}{c}\text { the same } \\ \text { different }\end{array}\right\}$ phenotypes and $\left\{\begin{array}{l}\text { the same } \\ \text { different }\end{array}\right\}$ genotypes.
(iii) What is the genotype of this child?

1

11. (continued)
(b) The diagram shows a cross between tall and dwarf pea plants.

(i) What would be the predicted ratio of Tall to Dwarf plants in the \mathbf{F}_{2} generation?
\qquad :
Tall

Dwarf

(ii) The observed ratio of Tall : Dwarf plants was different from the expected ratio.

Give an explanation for this difference.
(iii) Identify the true-breeding plants from the above cross.

Tick $(\boldsymbol{\checkmark})$ the box(es) of the correct plant(s).

Tall \mathbf{P} \square
Dwarf P \square

Tall F_{1} \square

KU	PS

1

1

12. An investigation was carried out into the effect of temperature on the rate of respiration by yeast.
Details of the apparatus, method used and results are given below.

Apparatus

Method

1 Water baths were set up over a range of temperatures.
$2 \quad 100 \mathrm{~cm}^{3}$ of glucose solution and $50 \mathrm{~cm}^{3}$ of yeast suspension were allowed to reach the same temperature as the water bath.
3 The glucose solution and the yeast suspension were mixed in the reaction flask.
4 After 1 hour, the volume of gas in the measuring cylinder was measured.

Results

Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	10	20	30	40	50
Volume of gas produced in 1 hour	$\left(\mathrm{cm}^{3}\right)$	9	18	36	48	5

(a) Ethanol was formed in the reaction flask.

What cell process produced this?
\qquad
(b) Describe the relationship between the temperature and the volume of gas produced in one hour.
\qquad
\qquad

1

2

12. (continued)

(c) Predict the volume of gas which would be collected in one hour if the investigation was repeated at $60^{\circ} \mathrm{C}$. Give an explanation for your answer.

Prediction \qquad cm^{3}

Explanation \qquad
(d) Describe the control flasks that would be set up to show that the gas was produced due to activity of the yeast and to no other factor.
\qquad
\qquad
(e) Use the results to complete a line graph to show the volumes of gas produced in one hour over the range of temperatures.
(An additional grid, if needed, will be found on page 27.)

13. Read the following passage and answer the questions based on it.

Adapted from GM Organisms by John Pickrell, www.newscientist.com

Genetic modification (GM) of crops began with the discovery that the soil bacterium Agrobacterium could be used to transfer useful genes from unrelated species into plants. The Bt gene is one of the most commonly inserted. It produces a pesticide toxin that is harmless to humans but is capable of killing insect pests. Many new crop types have been produced. Most of these are modified to be pest, disease or weedkiller resistant, and include wheat, maize, oilseed rape, potatoes, peanuts, tomatoes, peas, sweet peppers, lettuce and onions.

Supporters argue that drought resistant or salt resistant varieties can flourish in poor conditions. Insect-repelling crops protect the environment by minimising pesticide use. Golden rice with extra vitamin A or protein-enhanced potatoes can improve nutrition.

Critics fear that GM foods could have unforeseen effects. Toxic proteins might be produced or antibiotic-resistance genes may be transferred to human gut bacteria. Modified crops could become weedkiller resistant "superweeds". Modified crops could also accidentally breed with wild plants or other crops. This could be serious if, for example, the crops which had been modified to produce medicines bred with food crops.

Investigations have shown that accidental gene transfer does occur. One study showed that modified pollen from GM plants was carried by the wind for tens of kilometres. Another study proved that genes have spread from the USA to Mexico.
(a) What role does the bacterium Agrobacterium play in the genetic modification of crops?
\qquad
\qquad
(b) Crops can be genetically modified to make them resistant to pests, diseases and weedkillers. Give another example of genetic modification that has been applied to potatoes.

	AR	,
Marks	KU	PS
1		
1		

(c) Explain why a plant, which is modified to be weedkiller resistant could be:
(i) useful to farmers.
\qquad
\qquad
(ii) a problem for farmers.
\qquad
\qquad
(d) Give one example of a potential threat to health by the use of GM crops.
\qquad
\qquad 1
[Turn over
14. (a) In a commercial process, a bacterial species is provided with glucose and produces a hormone. The bacteria release the hormone into surrounding liquid. The graph shows changes in the glucose concentration and the hormone concentration during a 60 hour period.

14. (a) (continued)
(iii) Calculate the decrease in glucose concentration over the 60 hour period.

Space for calculation.
\qquad
$\mathrm{g} / 100 \mathrm{~cm}^{3}$
(iv) If glucose continues to be used at the same rate as between 50 and 60 hours, predict how many more hours it would be before all the glucose would be used up.
Space for calculation.
\qquad hours
(v) During the first 10 hours of the process, energy was being used for functions other than the synthesis of the hormone.
Give two pieces of evidence from the graph to support this statement.

1 \qquad
2 \qquad
(b) Glucose is a carbohydrate component of food. Which food component contains most energy per gram?
\qquad
15. (a) In a sewage works, micro-organisms cause the decay of the sewage. What is the benefit to the micro-organisms in carrying out this process?
\qquad
(b) What type of respiration must be carried out by the micro-organisms to ensure complete breakdown of the sewage?
\qquad
(c) Sewage contains a wide range of materials. What ensures that all these materials are broken down?
\qquad
(d) The table shows the methods of disposal of the sludge obtained from sewage treatment.

Method of disposal of sludge	Percentage
Spread on farmland	50
Landfill	10
Dumped at sea	15
Incinerated	20
Other disposal	5

Use the information from the table to complete the pie chart below.
(An additional chart, if needed, will be found on page 27.)

[END OF QUESTION PAPER]

1

1

1

$K U$	PS

ADDITIONAL PIE CHART FOR QUESTION 15(d)

SPACE FOR ANSWERS
AND FOR ROUGH WORKING

ACKNOWLEDGEMENTS

Question 11(a)—Photograph of a Child, Image no 39907132. Taken from www.pbase.com. Permission is being sought from Pbase.

Question 13-Extract adapted from GM Organisms by John Pickrell, taken from www.newscientist.com. Reproduced by kind permission of New Scientist.

