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Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 1 
 
 
(a) The distribution of X  is .  The distribution of 2N( , / )nμ σ Y  is 

, and therefore the distribution of 2 2N( , / )nρμ ρ σ /Y ρ  is .  2N( , / )nμ σ X  and 
Y  are independent. 

 
A random variable is a pivotal quantity for particular parameters if its 
distribution is independent of the parameters. 

 

We have that 2( / ) ~ N(0, 2 / )X Y nρ σ− , so 
2

( / ) ~ N(0,1)
2 /

X Y
n
ρ

σ
− ;  therefore 

this is a pivotal quantity. 
 
 
(b) (i) Let U have pdf ( ) ( )1 /1f u u θ θθ −−=   (for 0 < u < 1), and let . 1 logT Uθ −= −
 

By standard transformation results, the pdf of T is given by ( ) ( ) dug t f u
dt

= .  

Here , so 1 logt uθ −= − tu e θ−=  and tdu e
dt

θθ −= − . 

 

( ) ( )( )1 /1 1t t t t tg t e e e e e e
θ θθ θ θ θθ θ θ

θ
−− − − − − −t∴ = − = =

.=

2.=

, 

 
and this is valid for t > 0 (since 0 < u < 1 ⇒ –log u > 0). 

 
 

( )
0 00 0

0 1t t t tE T te dt te e dt e
∞ ∞∞ ∞− − − −⎡ ⎤ ⎡ ⎤= = − + = + −⎣ ⎦ ⎣ ⎦∫ ∫  

 

( ) ( )2 2 2

00 0
2 0 2t t tE T t e dt t e te dt E T

∞ ∞∞− − −⎡ ⎤= = − + = +⎣ ⎦∫ ∫  

 
( ) 2Var 2 1 1T∴ = − = . 

 
 
    (ii) V is the sum of n independent exponential random variables each with mean 1, 

so V has the gamma distribution with parameters n and 1.  Since θ is not 
involved, V is a pivotal quantity. 
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    (iii) For n large, V is approximately distributed as N(n, n), and so to this level of 

approximation 1.96 1.96 0.95V nP
n
−⎛ ⎞− < < =⎜ ⎟

⎝ ⎠
, 

 
i.e. ( )1.96 1.96 0.95P n n V n n− < < + = , 

 

i.e. 
1

11.96 log 1.96 0.95
n

i
i

P n n U n n
θ =

⎛ ⎞− < − < + =⎜ ⎟
⎝ ⎠

∑ . 

 
 

Hence the required approximate 95% confidence interval for θ is given by 
 

log log
1.96 1.96

i iu u
n n n

θ
− −

< <
+ −
∑ ∑

n
. 

 
 
 
 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 2 
 
 
(i) Let X = (X1, X2, …, Xn) represent the data;  then, if T is sufficient for the 

parameter θ, the distribution of X given T does not involve θ. 
 

The factorisation theorem states that T is sufficient if and only if the likelihood 
( ),L θx  can be written as a product ( ) ( ) ( ), ,L g T hθ θ=x x . 

 
 
(ii) From the factorisation theorem, maximising the likelihood L(x, θ) with respect 

to θ is equivalent to maximising g(T, θ) with respect to θ.  Since g depends on 
the data only through T, the maximum likelihood estimator depends on the 
data only through T.  The maximum likelihood estimator must therefore be a 
function of the sufficient statistic T. 

 
 
(iii) As an example, consider the one-parameter gamma distribution with pdf 

( ) ( )1, /xf x x eθ .θ θ− −= Γ  
 

Given a sample of n independent observations, ΠXi is sufficient for θ [in the 
examination, candidates could quote this as a standard result or derive it by 
factorising the likelihood].  However, the mean of the distribution is θ, so the 
method of moments estimator of θ is X . 

 
 
(iv) The likelihood for a sample of n independent observations is 
 

     ( )
( )

( )2
2

1

1 1 1, exp
22

in n

i
i

L x
x

θ
θθ π

=

log⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑
∏

x  

 

 ( )2
2

1 1 1exp log .
2 2

n

in
i

x 1
xθ θ π

⎛ ⎞⎧ ⎫= −⎨ ⎬ ⎜ ⎟⎩ ⎭ ⎝ ⎠
∑ ∏

 

           g (T, θ)            ( )  h x

)
 

which shows that ( 2log ixΣ  is sufficient for θ. 
 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 3 
 
 

( ) ... , 0 1( ) 1 , 0,1, 2,xp x x θθ θ < <= − = . 
 
 

(i) The likelihood is  ( )
1

1 i
n

x

i

L θ θ
=

= −∏ . 

 

(log log log 1i
i

L n x )θ θ∴ = + −∑ .       ( )log
1

ixd nL
dθ θ θ

∴ = −
−
∑ . 

 

Setting this equal to zero gives ( )ˆ ˆ1ix nθ θ= −∑ , i.e. 1ˆ
1i

n
n x x

θ = =
+ Σ +

.  It may be 

verified (e.g. by considering the second derivative – see part (ii) below) that this is 

indeed a maximum, and so the maximum likelihood estimator of θ is 1ˆ
1 X

θ =
+

. 

 
 
To find the method of moments estimator θ , we first obtain 

[ ] ( ) ( ) 2

0
1 1x

x
E X xθ θ θ θ θ

∞
−

=

= − = −∑  using the result quoted in the question. 

 

Thus [ ] 1 1 1E X θ
θ θ
−

= = − ,  and therefore θ  satisfies 1 1X
θ

= −  so that 1
1 X

θ =
+

. 

 
Thus, in this case, the maximum likelihood estimator is the same as the method of 
moments estimator. 
 
 
 

(ii) Differentiating logd
d

L
θ

 (see above) gives 
( )

2

22 2

log
1

ixd L n
dθ θ θ

= − −
−
∑ . 

 
( )
( ) ( )

2

22 2 2

1log
11

nd L n nE
d

θ
θ θ θθ θ

−⎛ ⎞
θ

∴ − = + =⎜ ⎟ −−⎝ ⎠
. 

 

Therefore the Cramér-Rao lower bound is ( )2 1
n

θ θ−
, as required. 
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(iii) In large samples, θ̂  may be taken as unbiased for θ  and ( ) ( )2 1ˆVar
n

θ θ
θ

−
≈  

(the Cramér-Rao lower bound), which we may estimate by 
( )2ˆ ˆ1

n

θ θ−
. 

 
 
So a large-sample approximate 95% confidence interval for θ is given by 
 

ˆ ˆ ˆ ˆ1 1ˆ ˆ1.96 , 1.96
n n

θ θ θθ θ
⎛ ⎞− −⎜ ⎟− +
⎜ ⎟
⎝ ⎠

θ . 

 
 
 
(iv) For the lower limit of the confidence interval to be less than 0, we would need 

the value of ˆ ˆ1.96 (1 ) / nθ θ−  to exceed θ̂  itself.  This means that we would require 

ˆ1.96 1 nθ− > ,  i.e. 2
ˆ 1

1.96
nθ < − .  But we know that θ̂  must be between 0 and 1, 

so this can only happen if n is 1, 2 or 3. 
 
Thus the comment has no validity provided the sample size is at least 4.  The 
comment is irrelevant because the confidence interval is a large-sample 
approximation and should certainly not be used for samples of size as small as 3. 
 
 
 
 
 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 4 
 

Loss function ( , ) 2TL T
T
θθ

θ
= + −      (T > 0,  θ > 0). 

 
 

(i) When θ = 1,  1( , ) 2L T T
T

θ = + − .   In the examination, any reasonable sketch of 

this was accepted.  The main properties are that L → ∞ as T → 0;  L → ∞ as 

T → ∞;  L = 0 for T = 1, and otherwise L > 0;  also, 2

11dL
dT T

= − .   To save 

space, the sketch is not shown in this solution. 
 
 

(ii) For 1, 2T r L r
r

θ= = + − .  

By inspecting the form of the function, T
r
θ

=  must give the same result. 
 

Hence being wrong by a factor of (say) 2 in the estimate carries the same loss 
as being wrong by a factor of ½. 

 
 
(iii) X1 + X2 is the sum of two independent exponential random variables each with 

mean θ, and so X1+ X2 has the gamma distribution with parameters 2, θ.  That 
is, letting Y denote X1+ X2, we have that the pdf of Y is / /yye θ 2θ−  (for y > 0). 

 
/ / /

2 2 2 00 0

1 1 1 1. y y yyE e dy e dy e
Y y

θ θ θθ 1
θ θ θ

∞ ∞ ∞− − −⎛ ⎞ ⎡ ⎤
θ

∴ = = = −⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ∫ =  . 

 
 

(iv) 1
2

T cX cY= = . 
 

( ) ( )E T cE X cθ∴ = =    and   1 2 1E E
T c Y c

2
θ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

( ) 2, 2E L T c
c

θ∴ = + −⎡ ⎤⎣ ⎦ . 

 

2

( ( , )) 21dE L T
dc c

θ
∴ = − , which equals zero when c = ±√2, and here we must 

take c = +√2 as c is required to be positive.  To confirm that this gives a 

minimum of the expected loss, consider 
2

2

( ( , )) 4d E L T
dc c

θ
3=  which is > 0 for 

c = +√2, so this value of c does indeed give a minimum. 
 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 5 
 
 

(i) On H0, ( )
1

!
eP X x
x

−

= = .  On H1, ( )
2 2
!

xeP X x
x

−

= = .  (For x = 0, 1, 2, … .) 
 

So the likelihoods are 0

1

!

n

n

i
i

eL
x

−

=

=

∏
 and 

2

1

1

2 .
!

ixn

n

i
i

eL
x

Σ−

=

=

∏
  So 1

0

2 ,ixnL e
L

Σ−=  and the 

Neyman-Pearson method requires us to reject H0 in favour of H1 when 1

0

L
L

 is 

large.  This ratio is an increasing function of ,ix∑  so rejection happens if 

1

n

i
i

x k
=

≥∑ , for a suitable value of k. 

 
 
(ii) Let T = ΣXi.  We have that T ~ N(nθ, nθ ), approximately. 
 

On H0, θ = 1 and so T ~ N(n, n), approximately.  The upper 1% point of 
N(0, 1) is 2.3263.  So the criterion for Type I error requires that we reject H0 if 

2.3263T n
n
−

≥ ,  i.e. if 2.3263T n n≥ + . 

 
On H1, θ = 2 and so T ~ N(2n, 2n), approximately.  So the criterion for Type II 
error now requires that ( )2.3263 ~ N(2 ,2 ) 0.99P T n n T n n≥ + = , giving 

 

2.3263 21 0
2

n n n
n

⎛ ⎞+ −
−Φ =⎜ ⎟⎜ ⎟

⎝ ⎠
.99 . 

 
2.3263 2 2.3263

2
n n n

n
+ −

∴ = − , which gives ( )2.3263 1 2n = + . 

 

Thus ( ){ }2
2.3263 1 2n = +  = 31.54, and we take n = 32. 

 
 
(iii) To test H0 against H1*: θ = θ* > 1, the likelihood ratio will be ( ) ( )* 1 * ixne θ θ Σ− −  

and the Neyman-Pearson method rejects H0 for 
1

n

i
i

x k
=

≥∑  as above.  The form 

of the test is the same for any θ* > 1, so the test is uniformly most powerful.  
As above, for a test of size approximately 0.01 we reject H0 if Σxi ≥ n + 
2.3263√n.  For the sketch, note that the power is (approximately) 0.01 for 
θ = 1 and 0.99 for θ = 2.  The curve will follow the usual S-shape.  To save 
space, the sketch is not shown in this solution. 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 6 
 
 
(i) Let L0m and L1m be the likelihoods under H0 and H1 after m observations have 

been sampled.  Let λm = L0m/L1m. 
 

For constants k0 and k1 to be determined (see below), the SPRT procedure is:  
continue sampling if k0 < λm < k1;  reject H0 if λm ≤ k0;  reject H1 if λm ≥ k1. 

 
The approximate values of k0 and k1 are as follows: 

 

0 1
k α

β
≈

−
,     1

1k α
β
−

≈ . 

 

Now let ( )
( )

0

1

log i
i

i

f x
z

f x
⎡ ⎤

= ⎢
⎣ ⎦

⎥  where ( )j if x  is the value of the pdf at observation 

xi under hypothesis Hj. 
 

Wald's formulae are 
 

( )
( )

( )0
0

1log 1 log
1

i

E N H
E Z H

α αα α
β β

⎛ ⎞ ⎛ −
+ −⎜ ⎟ ⎜−⎝ ⎠ ⎝≈

⎞
⎟
⎠  , 

 
 

( )
( )

( )1
1

11 log log
1

i

E N H
E Z H

α αβ β
β β

⎛ ⎞ ⎛ −
− +⎜ ⎟ ⎜−⎝ ⎠ ⎝≈

⎞
⎟
⎠  . 

 
 
 
(ii) If n is the fixed sample size, usually ( )0E N H n<  and ( )1 ,E N H n<  though 

occasionally there is a sample where N > n. 
 

For θ 0 < θ  < θ 1, E(N) will be larger in the middle of the range than it is at the 
boundaries and P(N > n ⏐ θ ) tends to increase for these intermediate values. 
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(iii) (a) 

2

2

2

/2

(3/8)1

/8

1

1
2

1
2 2

2

i

i

i

m
x

xmi
m m

x

i

e
e

e

π

π

λ

−

−=

−

=

Σ= =
∏

∏
. 

 
For tests with error probabilities α and β both approximately 0.05, we 
take k0 = 1/19 and k1 = 19 in the method outlined in part (i). 

 
 

We have 23log 2
8i iz x= −  and so 

 

     ( )0
3log 2
8iE Z H = −    and   ( )1

3 3log 2 4 log 2
8 2iE Z H ⎛ ⎞= − × = −⎜ ⎟

⎝ ⎠
 . 

 

( )0
0.9 log19 8.333log 2

8

E N H∴ = =
−

 

 

and   ( )1
0.9 log19 3.283log 2

2

E N H −
= =

−
 . 

 
 
 

(b) 
23(1.6)

8
1 2 0.766eλ

−
= = , so continue sampling. 

 
( )2 23 (1.6) ( 0.9)2 3 3.37 /88

2 2 4 1.130e eλ
− + − − ×= = = , so continue sampling. 

 
( )2 2 23 (1.6) ( 0.9) ( 2.5)3 3 9.62/88

3 2 8 0.217e eλ
− + − + − − ×= = = , so continue sampling. 

 
 

[ 0
1 0.053

19
k = =   and  k1 = 19  are the critical points.] 

 
 
 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2007.  Question 7 
 
 
(i) The likelihood is 
 

( ) ( )2 221 exp exp
2 22

n
i ix x nL

μ μ μμ
π

⎛ ⎞Σ − ⎛ ⎞Σ −⎛ ⎞= − ∝⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
x . 

 
 

The density of the prior is 
 

( ) ( )2 21 2exp exp
2 22

a aμ μ μπ μ
π

⎛ ⎞− ⎛ ⎞−
= − ∝⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. 

 
 

Hence the density of the posterior is 
 

      ( ) ( ) ( )Lπ μ π μ∝x x μ  
 

        ( ) ( )
2

22 1 1 1exp exp 12 2
1

i

i

x a
x a n n

n

μμ μ
⎧ ⎫Σ +⎛ ⎞−⎪ ⎪⎜ ⎟⎛ ⎞Σ + − + ⎪ + ⎪⎝ ⎠∝ ∝ −⎜ ⎟ ⎨ ⎬

⎝ ⎠ ⎪ ⎪
+⎪ ⎪⎩ ⎭

 

 

which can be seen to be of the form 
2

2

( )exp
2

x A
B

⎛ ⎞−
⎜
⎝ ⎠

⎟  so that it is the kernel of 

 

the pdf of the Normal distribution 1N ,
1 1

ix a
n n
Σ +⎛ ⎞

⎜ ⎟+ +⎝ ⎠
, as required. 

 
 
 
(ii) (a) This prior is a two-component Normal mixture, equally weighted:  

( ) ( ){1 N 2,1 N 2,1 .
2

+ − }   The two component means are 4 units apart, 

so the tails of the mixture will look just as in the basic Normal 
components.  There is a small overlap around 0 in which the shape will 
not be quite Normal.  The pdf is symmetrical because each component 
is equally weighted (each has weight ½). 

 
In the examination, any reasonable sketch was accepted.  To save 
space, a sketch is not shown in this solution. 
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(b) The likelihood L(x, μ ) is as in part (i). 
 

The prior can be split into two parts, and these can be dealt with 
separately, giving results as in part (i), by setting a1 = +2 and a2 = –2 to 
obtain 

 

( )
22

1

2
exp

2
j

j

aμ μ
π μ

=

⎛ ⎞−
∝ ⎜⎜

⎝ ⎠
∑ ⎟⎟ ,  for j = 1, 2. 

 
 

This leads to 
 

( )

2

2

1

11exp 12
1

i j

j

x a
n

n

μ
π μ

=

⎧ ⎫Σ +⎛ ⎞
−⎪ ⎪⎜ ⎟+⎪ ⎪⎝ ⎠∝ −⎨ ⎬

⎪ ⎪
+⎪ ⎪

⎩ ⎭

∑x  . 

 
The posterior is therefore an equal probability mixture of 

2 1N ,
1 1

ix
n n
Σ −⎛ ⎞

⎜ ⎟+ +⎝ ⎠
 and 2 1N ,

1 1
ix

n n
Σ +⎛ ⎞

⎜ ⎟+ +⎝ ⎠
. 

 
 
 

In the particular case in the question, these are N(0.86, 1/100) and 
N(0.90, 1/100). 

 
Unlike the mixture that forms the prior, the component means here are 
very close and there is a large overlap in the centre:  about 95% of the 
respective parts lie in the ranges (0.66, 1.06) and (0.70, 1.10).  When 
the two components are combined, the result will look very like 
N(0.88, 1/100)  –  note the small spread, the standard deviation is only 
1/10. 

 
Again, any reasonable sketch was accepted in the examination.  A 
sketch is not shown here. 
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(This solution is continued on the next page) 
 
 
(a) Kolmogorov-Smirnov test 
 

Given a random sample from a population with a hypothesised specified 
cumulative distribution function F(x), the sample (empirical) cumulative 
distribution function S(x) is found as follows and compared with the specified 
F(x).  With n observations in the sample, define S(x) as (1/n) × the number of 
sample values that are ≤ x, for each observed x.  If the sample values are 
arranged in order as x(1), x(2), …, x(n), then S(x) increases by 1/n at each new 
value x(j).  So the graph of S(x) against x is a step function. 

 

Basically the test examines whether F(x) is fairly close to S(x), i.e. whether the 
graph of F(x) is close to the step function S(x).  The maximum difference 
between S(x) = j/n and the corresponding F(x(j)) is found, and referred to a 
special table of critical values for the usual significance levels.  If this 
maximum difference is not significant, the hypothesis that that cdf is F(x) is 
not rejected.  This test is distribution-free, i.e. it can be used for any (fully 
specified) F(x).  It can be used for samples of any size, including small ones. 

 
Chi-squared test 

 

This test, basically for the same purpose, needs a reasonable amount of data.  
The data have to be grouped into suitable intervals, a somewhat arbitrary 
process which can affect inferences.  Once grouped, the frequencies in each 
interval are found and compared with the frequencies to be expected on the 
proposed hypothesis, using the formula Σ(Oi – Ei)2/Ei where Oi and Ei are the 
observed and expected frequencies in the ith interval.  The number of degrees 
of freedom is found by the usual rule (number of intervals – 1) and the usual χ2 
table is used.  If Cochran's proposal to choose intervals with roughly equal 
expected frequencies is followed, the power of this test is fairly good, but 
skew distributions with long tails may cause problems (as do some discrete 
distributions). 

 

The test is approximately distribution-free in large samples.  The 
approximations inherent in it are usually close to being satisfied provided there 
are no "small" expected frequencies.  The criterion that no Ei may be less than 
5 is often used, though this is often thought to be too restrictive. 

 
Situation with unknown parameter(s) 

 

If the basic form of the hypothesised underlying distribution is known but with 
unspecified parameter(s) [e.g. it is Normal but its mean and variance are not 
known], the parameter(s) must be estimated from the sample data.  F(x) can 
then be constructed using the estimated value(s);  this will be satisfactory if the 
sample is sufficiently large for the estimates to be reliable.  The test procedure 
can then be carried through as before, but there is the problem of "over-fitting" 
since the data are being compared with an F(x) which is automatically "closer" 
to the data by virtue of using the estimated parameter(s).  The chi-squared test 
provides a built-in adjustment by reducing the number of degrees of freedom 



by one for each parameter that is estimated;  the test remains a satisfactory 
procedure to a good level of approximation.  There is no real way to adjust the 
Kolmogorov-Smirnov test in general.  If it is simply used as described above, 
with its standard tables, the procedure will be conservative, possibly 
substantially so.  Special tables might be available for particular hypothesised 
distributions, but each distribution needs its own table. 

 
 
(b) Suppose the two samples are of sizes n1 and n2 and it may be assumed that the 

underlying populations are Normally distributed with known variances σ1
2 and 

σ2
2.  The means μ1 and μ2 may sensibly be used as location parameters and the 

null hypothesis will typically be μ1 = μ2.  A Normal-based parametric approach 
is to calculate the value of the test statistic 

 

1 2
2

1 2

1 2

x xz

n n

2σ σ
−

=

+

          (where 1x  and 2x  are the sample means) 

 

and refer it to the null distribution N(0, 1) in the usual way.  If the samples are 
large, the Central Limit Theorem shows that this method can still be used as a 
good approximation.  This remains the case when the population variances are 
unknown, estimating them by the sample variances on the basis that, in large 
samples, these estimates should be satisfactory.  If the samples are small and 
the population variances are unknown, this method is not reliable;  but, for the 
case where the underlying distributions are Normal, a similar method based on 
the t distribution can be used. 

 
A suitable rank-based test is Wilcoxon's.  Here the responses are ranked in 
order from the smallest to the largest in a single ranking.  The sum of the ranks 
corresponding to one of the samples is then calculated.  This is referred to a 
table of critical values, under the hypothesis of no difference in the location-
parameters of the underlying distributions but on the assumption that these 
distributions are otherwise identical. 

 
In general, Normal-based tests are more powerful than rank-based tests if the 
underlying distributions are indeed Normal (or if the samples are sufficiently 
large that the Central Limit Theorem may be reliably invoked).  However, 
rank-based tests are likely to be more robust to departures from the assumption 
of Normality or to the presence of outliers, and may be preferred for this 
reason.  This is especially true if the samples are small.  Rank-based tests are 
also often easy to use, in terms of calculating the value of the test statistic and 
referring it to tables of its critical values (further, easy-to-use Normal 
approximations to null distributions are available and are good even for only 
moderately large samples). 
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