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Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 1 
 
Part (i)
 
The slope down towards the river is very likely to be a source of systematic variation 
in the natural fertility of the reserve, and the distance from the motorway is very likely 
to be a source of systematic variation due to pollution or other climatic reasons.  Both 
these factors are candidates to be used for blocking, and the Latin square design can 
deal with both together.  The danger of using a completely randomised design is that 
the layout might coincide with one of the systematic factors and we would not be able 
to disentangle this in the analysis. 
 

To choose a 4×4 Latin square, start with one of the four standard squares (i.e. with the 
letters in alphabetical order in the first row and in the first column) chosen at random.  
Then randomly permute the order of the rows, the order of the columns and the 
allocation of the treatments to the letters. 
 
 
Part (ii)
 
(a) The grand total is 793.98;  the "correction factor" is 793.982/16 = 39400.265. 
 

So the total sum of squares = 41802.6036 – 
2793.98

16
= 2402.3386,  with 15 df. 

 

SS for rows (motorway) = 
2 2 2 2200.76 199.27 196.05 197.90 793.98

4 4 4 4 16
+ + + −

2

 
 

        = 3.0157,  with 3 df. 
 

SS for columns (river) = 
2 2211.46 183.59... 39400.265

4 4
+ + −  = 108.9608, 

 

with 3 df. 
 

SS for treatments = 
2 2250.10 120.93... 39400.265 2275.7726

4 4
+ + − = , with 3 df. 

 
The residual SS and df follow by subtraction. 

 
 

Hence: 
 

SOURCE DF SS MS F value 
Rows (motorway)   3       3.0157     1.0052     0.41 
Columns (river)   3   108.9608   36.3203   14.94 
Treatments   3 2275.7726 758.5909 311.97 
Residual   6     14.5895     2.4316 = 2σ̂  
TOTAL 15 2402.3386   

 
Solution continued on next page 
 



The F values are each referred to F3,6;  the upper 5% point is 4.76, the upper 1% 
point is 9.78 and the upper 0.1% point is 23.70.  So there is no evidence of an 
effect due to the motorway, strong evidence of an effect due to distance from the 
river and extremely strong evidence of differences between treatments. 

 
 
(b) The required contrasts are as follows (treatment totals are also shown, for use in 

the next part). 
 
 

 A B C D 
Total 250.10 218.06 204.89 120.93 

Hay cut / not cut   1   1   1 –3 
Removal from site   2 −1 –1   0 
Where hay was left   0   1 –1   0 

 
 
 
 
 
 
(c) Using these contrasts and the treatment totals, we get the following table, in 

which SS = (value)2/divisor, each with 1 df, and the F value is then obtained by 
dividing by the residual mean square from the analysis of variance above. 

 
 

 Value Divisor SS F value 
Hay cut / not cut 310.26 48 2005.44 824.75 

Removal from site   77.25 24   248.65 102.26 
Where hay was left   13.17   8     21.68     8.92 

 
 
 
 
 

(It may be checked that these three SSs add to the overall treatments SS in the 
basic analysis of variance.) 

 
The F values are each referred to F1,6;  the upper 5% point is 5.99, the upper 1% 
point is 13.74 and the upper 0.1% point is 35.51.  All the contrasts appear to be 
important, the first and second especially so. 

 
Recalling that high values show more effective treatments, we conclude that there 
is extremely strong evidence that it is better to cut the hay than not, and that it is 
better to remove the hay from the site.  There is also evidence that it is better to 
flail-cut the hay and leave it in windrows than to scythe it and leave it in situ. 

 
 
(d) It is assumed that the model accounts for all sources of systematic variation and 

that the random variation is given by independent Normally distributed residuals 
with zero mean and constant variance over the entire meadow. 

 
The Normal probability plot suggests that the Normality assumption is 
satisfactory.  However, the second plot suggests an increase in variance as the 
size of the fitted values increases.  A transformation, such as logarithmic or 
square root, should be examined as an alternative to analysing the data in the 
original units. 

 



Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 2 
 
 
Part (a)
 
Blocking is a procedure under which experimental units are grouped into "blocks" 
that are expected to be as alike as possible within themselves but may be consistently 
different from each other.  The blocks should then remove a possible element of 
systematic variation so that the residual mean square in the usual analysis of variance 
truly estimates just experimental error and is not inflated by such a source of 
consistent variation.  Comparisons between treatment means are then more precise. 
 
For example, in an industrial experiment that takes some time to perform, the blocks 
might be days, or shifts, or parts of days, chosen so that every treatment can be 
examined (at least) once in each block using the same machinery. 
 
(i) A randomised (complete) block design is appropriate.  The days are the blocks 

and the concentrations are the treatments;  each concentration is run once 
every day.  Any consistent day-to-day differences are removed by the 
blocking.  The order in which the concentrations are run must be random, with 
a different randomisation for each day;  this is in case there is some systematic 
variation or trend within each day. 

 
(ii) As only three runs are now possible each day, each block cannot contain all 

four treatments (i.e. the hardwood concentrations).  A balanced incomplete 
block design retains some symmetry in the layout, such that analysis and 
interpretation of results remains relatively straightforward;  any pair of 
treatments is compared with the same precision.  This is achieved by having 
every pair occurring together the same number (conventionally denoted by λ) 
of times in the overall design. 

 
In general, a block contains k units and there are b blocks altogether, so bk = N 
units are needed in all.  There are v treatments, each of which is replicated the 
same number (r) of times;  so rv = N.  Balanced incomplete block designs only 
exist when these conditions are satisfied and when λ is an integer;  it can be 
shown that λ = r(k – 1)/(v – 1). 

 

In the present case, we have v = 4, b = 4 and k = 3.  Hence r = 3, and so λ = 2 
and a design can be found.  An example of such a design is 

 

Block I Block II Block III Block IV 
ABC ABD ACD BCD 

 
The analysis of variance will have the following numbers of degrees of 
freedom:  total 11, treatments (concentrations) 3, blocks (days) 3, residual 5.  
The number of df for the residual is not very large;  experimental error may 
not be estimated very accurately. 
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Part (b)
 
 
(i) If the variance of colony diameter increases with mean diameter in such a way 

that the coefficient of variation of diameter is (roughly) constant, a logarithmic 
transformation will stabilise the variance and thus might be appropriate for 
analysis. 

 
 
(ii) The residual has (4 – 1)(6 – 1) = 15 df, so the residual mean square is 0.496/15 

= 0.0331.  Thus the estimated variance of the difference between any two of 
the treatments is (2 × 0.0331)/6 = 0.0110.  The double-tailed 5% point of t15 is 
2.131, so any difference greater than 2.131√(0.0110) = 0.224 is significant at 
the 5% level. 

 
Arranged in ascending order, the treatment means are 

 

C  2.45        B  2.72        D  2.88        A  3.34. 
 

This suggests that treatment (growth supplement) C gives a lower result than 
either of B and D, and treatment A a higher result than either of those two, but 
B and D seem not to be different. 

 
 
(iii) The sample mean difference for A and B is 0.62.  So a 95% confidence interval 

for the true mean difference for these treatments is (using the result in part (ii)) 
0.62 ± 0.224,  i.e. (0.396, 0.844). 

 
In the original units (i.e. taking anti-logarithms, base e), the interval is (1.486, 
2.326).  These are in terms of the actual diameters, in mm.  Similarly, the point 
estimate of the mean difference in the original units is e0.62 = 1.859 mm. 

 
 
 



Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 3 
 
We use the usual nomenclature and notation.  The main effect of a factor in a 22 
experiment is the difference between the results with the factor at its high level and 
those with it at its low level;  thus, for factor A, it is given by ab + a – (b + (1)) [an 
average difference might be used, i.e. with a divisor of 2].  Similarly, for B it is given 
by ab + b – (a + (1)). 
 
The remaining independent comparison that is possible is ab + (1) – (a + b).  By 
rearranging this as (ab – b) – (a – (1)), it can be seen to measure the difference 
between the "responses" to factor A at the high level of B and those at the low level of 
B.  Equivalently, the roles of A and B can be interchanged throughout this.  It is called 
the interaction between A and B. 
 
The first diagram below gives an example of results from a situation where there is no 
interaction (and no experimental error).  Observations are indicated for the four 
combinations of a level of A and a level of B.  At each level of B, the "response" to A 
increases by 5 as we move from the low to the high level.  Similarly, at each level of 
A, the "response" to B increases by 10 as we move from low to high. 
 

high low 

level of B 

level of A

15 

25 

20

30

 
 
 high  
 
 
 

low  
 
 
 
 
 
 

The next diagram illustrates a situation where there is interaction.  The response to 
either factor varies, depending on the level of the other factor. 
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Note that alternative forms of diagrams may be used.  A common form is similar to 
what is shown in the two halves of the diagram on the next page.  Each half shows a 
two-factor diagram for factors A and B, with "yields" plotted, a line joining the points 
for A at high and low levels at the low level of B, and another line joining the points 
for A at high and low levels at the high level of B.  If these lines were parallel, it 
would indicate absence of interaction.  The diagrams on the next page show strongly 
non-parallel lines (even to the extent that they cross each other), giving a strong 
indication of the presence of interaction. 
 
 
 
Parts (i) to (iv)
 
The grand total is 175;    the "correction factor" is 1752/16 = 1914.0625. 
 

So the total sum of squares = 2605 – 
2175

16
= 690.9375,  with 15 df. 

 

SS for hospitals = 
2 269 106 175

8 8 16
+ −

2

 = 85.5625,  with 1 df. 

 
To find the SS for A, we need the totals for the low and high levels of A.  These are 85 
(= 5 + 25 + 15 + 40) and 90 respectively.  So we have 
 

SS for A = 
2 285 90 175

8 8 16
+ −

2

 = 1.5625,  with 1 df. 

 
 
The remaining entries can now be found by subtraction, and the complete analysis of 
variance table is as follows. 
 

Source of variation df Sum of squares MS F value 
Hospitals 1 85.5625  18.753 
       A 1 1.5625    0.342 
       B 1 14.0625    3.082 
       C 1 189.0625  41.438 
     AB 1 351.5625  77.055 
     AC 1 1.5625    0.342 
     BC 1 1.5625    0.342 
   ABC 1 14.0625    3.082 
Treatments 7 573.4375 81.9196 17.955 
Residual 7 31.9375   4.5625  
Total 15 690.9375   

 
A suitable diagram to show the relationships between the factors is shown on the next 
page. 
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The diagram on the previous page suggests a possible C effect, since the responses at 
the high level of C ("C +") are higher than the corresponding responses at the low level 
of C ("C 

–").  It also appears that there is a two-factor interaction AB (so the main 
effects of A and B should not be studied in isolation), but probably no AC or BC 
interactions.  Further, as the sections of the diagram for low and high C are quite 
similar, it seems unlikely that there is a three-factor ABC interaction. 
 
 
For formal significance tests, we can compare each of the single-degree-of-freedom 
effects in the analysis of variance table on the previous page with the residual mean 
square in the usual way.  The resulting F values are shown in the table (mean squares 
for these effects have not been shown, to avoid cluttering the table;  they are of course 
the same as the sums of squares as they each have 1 df). 
 
The F values are each referred to F1,7;  the upper 5% point is 5.59, the upper 1% point 
is 12.25 and the upper 0.1% point is 29.25.  So there is very strong evidence of a 
difference between hospitals (and, as high values indicate better quality of life, 
hospital 2 seems to be the better) and extremely strong evidence for a main effect of 
factor C (psychotherapy:  it appears to be better to be given psychotherapy) and for an 
interaction between factors A and B (the two drugs;  it appears to be better to be given 
one of them but not both). 
 
 
Apparently the patients and medical staff responsible for conducting the trial knew 
which treatment each patient received;  this must be true of factor C (no explicit 
information is given about A and B).  This would be very likely to lead to considerable 
bias in results, especially in a psychiatric study.  The observed effect of C could be 
just this  –  or it might of course be genuine. 
 
Also, the patients should have completed the same questionnaire before the 
experiment as well as afterwards.  The data for analysis would then consist of the 
differences between the two scores.  This would remove personal differences in 
attitude. 
 
 



Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 4 
 
 
(i) Taking more than one observation at a given point enables an estimate of 

experimental error to be obtained from the repeat observations, regardless of 
what model is fitted. 

 
 
(ii)(a)
 

9 0 0
' 0 4 0

0 0 4

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X X   and so  ( ) 1
1/ 9 0 0

' 0 1/ 4
0 0 1/

− 0
4

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X X . 

 

(The "dash" indicates the transpose of the matrix.  A notation of superscript T 
is also commonly used.) 

 

Thus ( ) ( ) ( )2 2
0 1 2

ˆ ˆ ˆVar (1/ 9) , Var (1/ 4) , Var (1/ 4)β σ β σ β 2= = = σ , and all 

covariances are zero. 
 

( ) ( ) ( ) ( ) ( )2 2 2 2
0 1 1 2 2 1 2

1 1ˆ ˆ ˆˆVar Var Var Var
9 4

Y x x xβ β β σ ⎛ ⎞2x∴ = + + = + +⎜ ⎟
⎝ ⎠

. 

 
 
(ii)(b)
 

We now have ( ) 1
1/ 9 0 0

' 0 1/ 3
0 0 1/

− 0
3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X X  and so, similarly, we get 

 

( ) ( ) ( ) ( ) ( )2 2 2 2
0 1 1 2 2 1 2

1 1ˆ ˆ ˆˆVar Var Var Var
9 3

Y x x xβ β β σ ⎛ ⎞2x∴ = + + = + +⎜ ⎟
⎝ ⎠

. 

 
 
(ii)(c)
 

Here there will be non-zero off-diagonal terms in the matrix, indicating that 
there are non-zero covariances.  Thus the estimators are no longer independent 
of each other. 

 
The additional terms in the formula for Var( ) are Ŷ

 

( ) ( ) ( )1 0 1 2 0 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ2 Cov , 2 Cov , 2 Cov ,x x x x 2β β β β β+ + β . 
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(iii) Three separate graphs are shown to avoid an excessively cluttered display.  
The limits of electronic reproduction militate against great accuracy here.  
Each graph has tick marks at 1 and –1 on each axis and crosses to indicate the 
design points. 

 
 
   A        B           C 
 
 
 
 
 
 
 
 
 
 
 
  Also     Also          Also 
  five     six          six 
  points     points          points 
  at (0, 0)    at (0, 0)         at (0, 0) 
 
 
 
(iv) The experimenter will have used design A.  If the first-order model proves 

inadequate, more experimental points will be needed so as to be able to fit a 
second-order model 

 
2 2

0 1 1 2 2 11 1 22 2 12 1 2Y X X X X X Xβ β β β β β= + + + + + + ε . 
 

The experimenter might be near the optimum, i.e. the values of X1 and X2 that 
give the maximum Y.  If so, the point (0, 0) would serve as the centre of a 
design to examine curvature as given by the second-order model.  A central 
composite rotatable design could be used, containing the points in design A 
and (√2, 0), (–√2, 0), (0, √2) and (0, –√2). 

 
 



Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 5 
 
 
(i) In stratified random sampling, a population is divided into groups (strata).  

The groups may be fairly homogenous within themselves, but possible 
systematic differences are expected between them.  Independent simple 
random samples are taken within each group. 

 

For proportional allocation, the sample sizes {nh} in the strata are in the same 
ratio as the stratum sizes {Nh} in the whole population.  Optimal allocation 
chooses the {nh} so as to minimise the variance of an estimator of population 
mean, total or proportion for a given total cost (budget).  It can be shown that 
the {nh} must be proportional to NhSh/√ch, where Sh and ch are respectively the 
standard deviation and the cost of sampling a unit in stratum h. 

 

If the population can be divided into useful strata, the variance within strata 
should be much less that the overall population variance.  Stratification will 
then improve the precision of estimates considerably.  Examples would be 
population surveys in urban and rural parts of a region, agricultural surveys in 
different climatic and soil conditions, social surveys in which age-groups are 
the strata, industrial surveys of small and large companies, and so on.  The 
improvement by stratification is greatest when the population is stratified by 
the value of the quantity to be measured in the survey, or some variable highly 
correlated with it. 

 
 
(ii) There are N = 100,000 companies;  N1 = 20,000 are large and N2 = 80,000 are 

small.  The total sample size is n = 1000;  let this consist of n1 large companies 
and n2 small ones.  Sampling costs are the same for any unit (company). 

 
 

(a) Ignoring the finite population correction (and for large N), 
 

( ) ( )2 1
Var h h

st h
h h

P P
p W

n
−

=∑  , 
 

where Wh = Nh/N (Wh is the "stratum weight" for stratum h). 
 
 

(b) (1) With proportional allocation, it is immediate that n1 = 200 and 
n2 = 800. 

 
(2) With optimal allocation with constant cost of sampling, we 

have (for large N) 
 

(1 )
(1 )

h h hh

h h h

W P Pn
n W P P

−
=

−∑
 

 
Using the values P1 = 0.9 and P2 = 0.5 (i.e. using the pilot 
survey estimates), and as n = 1000, we have 
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(1 ) 0.2 0.9 0.1 0.8 0.5 0.5 0.46h h hW P P− = × + × =∑  
 

and thus 
 

1n =
0.2 0.9 0.11000 130.435

0.46
×

× =  
 

2
0.8 0.5 0.51000 869.565

0.46
n ×

= × = . 

 
So we take n1 = 130 and n2 = 870. 

 
 

(c) The relative efficiencies are measured as (inverse) ratios of variances. 
 

For a simple random sample of size n, for large N and ignoring the 
finite population correction, the variance of the estimator of the 
population proportion is given by P(1 – P)/n where P is here the 
overall proportion which recognise trade unions which (using the 
information from the pilot survey) we take as 58000/100000 = 0.58.  
Thus we have 

 
Var(psrs) = (0.58)(0.42)/1000 = 0.0002436. 

 
Using the result in (ii)(a), the variances for stratified sampling are 

 
for proportional allocation: 

 

Var(pprop) = 2 20.9 0.1 0.5 0.50.2 0.8 0.000218
200 800
× ×

+ =  

 
for optimal allocation: 

 

Var(popt) = 2 20.9 0.1 0.5 0.50.2 0.8 0.0002115
130 870
× ×

+ = . 

 
Therefore the relative efficiencies are 

 

for proportional allocation: 0.0002436 112%
0.000218

=  
 

for optimal allocation:  0.0002436 115%
0.0002115

= . 
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(d) For this survey, stratified sampling with either form of allocation gives 
a modest but noticeable improvement in the efficiency of estimation of 
the proportion for the whole population;  optimal allocation is only 
slightly better than proportional allocation. 

 
However, the improvement is far from spectacular.  Stratification will 
not give great benefit unless the {Ph}, and hence the stratum variances, 
vary considerably between strata.  When means of a measured variable 
are being estimated, there is more scope for substantial benefit through 
large differences in variances than there is for proportions. 
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(i) A large region in a developing country is very likely to have communication 

and transport problems which will slow down the sampling process. 
 

There may be maps which will help to identify major areas of agriculture, 
although most of the region probably grows some crops where it can.  If 
available, aerial photographs (or satellite images) could be very useful. 

 
Stratification might be by geographically or climatically different parts of the 
region.  Stratification would ensure that all such sub-regions are studied, 
which might not be the case under simple random sampling. 

 
Clustering would seek to identify parts of the region that exhibit most of the 
characteristics of the whole region.  Survey work could then be restricted to a 
few clusters (maybe only one), instead of having to try to cover the whole 
region. 

 
One possibility would be to carry out an initial stratification using all available 
information and local knowledge, then form clusters within each stratum and 
choose a sample of these.  An administrative base for the survey could be set 
up in each stratum, where the work for the chosen clusters would be 
coordinated.  It is likely to be important not to have to visit isolated parts of 
the region more than once, and to maximise the information obtained from 
each such visit. 

 
 
(ii) (a) The simple random sample estimate of the population total is 
 

25751ˆ 75308 943677(.04)
2055srsY N y= = × = . 

 
To find the estimated variance underlying this, we first calculate 

 
2

2 1 25751596737 133.4244
2054 2055

s
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

. 

 
Thus the estimated variance is 

 

( )
2

2 2 2055 133.42441 75308 1
75308 2055

sN f
n

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 

 
and, taking the square root, the standard error is therefore 18925.4. 
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The ratio estimate is 25751ˆ 0.4088
62989

i

i

yr
x

Σ
= = =
Σ

.  So the ratio estimate 

of the population total is  
[note that the value here may be found slightly but noticeably different 
depending on the level of accuracy with which "0.4088" is worked]. 

ˆ ˆ 0.4088 2353365 962055(.61)RY rX= = × =

 
Using the given formula, the estimated variance underlying this is 

 

{ }275308 73253 596737 (2 0.4088 1146391) (0.4088 2937851)
2055 2054

×
− × × + ×

×
 

 
=  1306.9358 × 150413.8566 

 
and taking the square root gives the standard error as 14020.7. 

 
 

(b) We are given that the linear regression estimate is  = 969651.6 and 
the standard error is 13881.9.  So both this and the ratio method give 
very similar estimates and precisions.  The estimate from simple 
random sampling is a little lower and distinctly less precise.  The 
relative efficiencies, using SRS as base, are 

L̂RY

 

for the ratio estimate:   
218925.4 182%

14020.7
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 

for the linear regression estimate: 
218925.4 186%

13881.9
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 
Thus using the supplementary information on x has improved precision 
by more than 80%. 

 
 

(c) If the supplementary variable is strongly positively correlated with y, 
as here, then the ratio estimator will be more efficient than the 
estimator using the simple random sample mean.  The regression 
estimator is never less efficient than the simple random sample 
estimator.  Finally, the regression estimator cannot be less efficient that 
the ratio estimator.  It makes fewer assumptions about the relationship 
between y and x (in effect, the ratio estimator assumes a regression that 
passes through the origin). 

 
Both the ratio and the regression estimators are biased in small 
samples, but the bias is negligible in large samples. 
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(i) This may be considered as a cluster sample with the hospitals as the clusters 

(i.e. as the first-stage units) and the individual patients as the second-stage 
units, limited to those patients suffering from the specified conditions. 

 
 
(ii) (a) The number of clusters is N = 33, of which n = 10 have been sampled. 
 

The total number of persons in the sample is m = 560 + … + 110 = 
2210. 

 
Thus, for the simple random sample of 10 hospitals, the sample mean is 
m  = 2210/10 = 221, and this is an unbiased estimate of the population 
mean of the cluster totals.  Hence a point estimate of the total number 
of persons with these conditions in the 33 hospitals is 33 × 221 = 7293. 

 
The variance underlying this estimated total is N 

2Var( m ).  We have as 
usual that Var( m ) is estimated by ( ) 21 /f s n−  where, in the customary 
notation,  f = 10/33 and s2 = (1/9){680700 – (22102/10)} = 21365.56. 

 
Thus the standard error of the estimated total is 

 

2 10 21365.5633 1 1273.44
33 10

⎛ ⎞− =⎜ ⎟
⎝ ⎠

. 

 
The double-tailed 5% point of t9 is 2.262, so an approximate 95% 
confidence interval for the total is given by 

 

7293 (2.262 1273.44)± ×  
 

i.e. it is (4412.5, 10173.5). 
 
 
 (b) A point estimate of the proportion of people discharged dead is 
 

4 4 ... 1 30ˆ 0.013575
560 190 ... 110 2210

p + + +
= = =

+ + +
. 

 
An approximate expression for the estimated variance underlying this 
estimate is 

 

2
2

1
p

f s
nm
−  

 

where, using a customary notation, 
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      ( )22 1 ˆ
1p is a

n
= −

− ∑ ipm  
 

( ) ({ ) }2 21 4 (0.013575 560) ... 1 (0.013575 110)
9

= − × + + − ×  
 

= 7.699869    (note:  slightly but noticeably different numerical 
values will be obtained depending on the 
accuracy of working). 

 
Thus the approximation for the estimated variance of  is p̂

 

2

1 (10 / 33) 7.699869 0.000010988
10 221
−

× =
×

 
 

and the standard error is the square root of this, i.e. 0.0033147. 
 

Now again using the double-tailed 5% point of t9, i.e. 2.262, an 
approximate 95% confidence interval for the proportion is given by 

 

0.013575 (2.262 0.0033147)± ×  
 

i.e. it is (0.0061, 0.0211). 
 

This is based on the Normal approximation to the binomial 
distribution, which is scarcely likely to be valid for a p so small and the 
samples not especially large.  The large-sample formula used for the 
variance may also not be very valid here.  The result should be 
regarded as very approximate.  (There is also the point that  is a ratio 
estimator and therefore biased, though the bias may be small.) 

p̂

 
 
(iii) The main reason why cluster sampling might be preferred is that stratified 

sampling would need a full population list whereas cluster sampling only 
needs the information for the chosen clusters.  Extracting data items from 
detailed hospital records is likely to be time-consuming and expensive, so 
reducing the number required is important.  It is also quite likely to be the case 
that some hospitals would not give permission for their patient records to be 
explored. 

 
Stratified sampling, however, is likely to lead to more precise estimates.  
Hospital sizes vary, and larger hospitals may account for a higher proportion 
of patients in these conditions. 

 
Simple random sampling of the clusters leads to units in small clusters having 
greater probability of selection that units in large clusters;  this can lead to 
estimates having bias and low precision.  Sampling with probability 
proportional to size would be an improvement, for example based on the 
numbers of Accident and Emergency admissions at the hospitals. 

 



Graduate Diploma, Applied Statistics, Paper II, 2007.  Question 8
 
 
Comparison of crude death rates may be confounded by differences in the population 
structure of the subgroups being compared.  Standardisation allows comparisons free 
of the effect of differences in the numbers of individuals in the subgroups of the 
populations.  These sub-groups are typically defined by age or age and sex. 
 
Direct standardisation involves defining a standard population and applying to it the 
specific death rates for the subgroups being compared.  This gives the number of 
deaths expected in the standard population if these specific rates were to apply.  
Indirect standardisation applies a known set of specific death rates for a standard 
population to the subgroup populations. 
 
Each method assumes that the relative increase in mortality with age is the same in 
each population, standard and other. 
 
 
(i) The crude rate for CHD for males in the UK in 2004 is 58555/29270000 or 

200.1 per 100,000.  For females, it is 47287/30563000 or 154.7 per 100,000. 
 
 
(ii) The direct adjusted rate is ΣNipi / ΣNi where Ni is the number of individuals in 

age group i of the European Standard Population and pi is the age-specific 
death rate in the study population (UK males in 2004) for group i.  This is 
calculated using the following table.  The final column of the table is used in 
part (iii). 

 
Age group i pi Nipi nipi

< 35       1.0106     0.5053     10.9956 
35 – 44     18.6731     2.6142     71.7047 
45 – 54     80.4497   11.2630   272.7246 
55 – 64   217.3746   23.9112   636.9077 
65 – 74   595.9983   41.7199 1233.7165 

75 + 1922.5393   76.9016 2576.2027 
TOTAL  156.9152 4802.2518 

 
 ΣNi is here 100,000 so the required direct adjusted rate is 156.9 per 100,000. 
 
 
(iii) Here the standard population is that of UK males.  Let ni be the number (in 

thousands) of males in age group i in Scotland.  Then Σnipi = 4802.2518, as 
shown in the last column of the above table.  The actual number of deaths in 
Scotland is 5814 (stated in the introduction to the question).  So the 
standardised mortality ratio (deaths per thousand individuals per year) is 
5814/4802.2518 = 1.211. 
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(iv) CHD mortality figures are as follows. 
 

 UK 
crude rate 

UK 
direct adjusted rate 

Scotland 
standardised 

mortality ratio 
Males 200.1 156.9 1.21 

Females 154.7     80.13 1.23 
 
 

The mortality rates are considerably higher for males than for females in the 
UK.  The crude rates indicate an increase of about 30% for males over 
females;  the direct adjusted rate indicates that it is almost doubled.  It is very 
noticeable in the detailed table given in the question that there are many more 
deaths for males than females in every age group except "75+". 

 
The standardised mortality ratios indicate that CHD mortality is just over 20% 
higher in Scotland than in the UK as a whole, for either sex. 
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