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Graduate Diploma, Applied Statistics, Paper I, 2007.  Question 1 
 
 
(i) AR(1):  0 1 1t t tY Yφ φ ε−= + +  
 

MA(1): 0 1 1t t tY φ ε φ ε −= + +  
 

where the { }iφ  are constants and the { }tε  are uncorrelated identically 

distributed random variables which are also uncorrelated with the { }tY . 
 
 
(ii) 0 1 1t t tY Yφ φ ε−= + +  
 

    ( )0 1 0 1 2 1t t tYφ φ φ φ ε ε− −= + + + +  
 

    ( )0 1 0 1 0 1 3 2 1t t t tYφ φ φ φ φ φ ε ε ε− − −= + + + + + +⎡ ⎤⎣ ⎦  
 

    ( )2 3 2
0 1 1 1 3 1 2 1 11 t t t tYφ φ φ φ φ ε φ ε ε− − −= + + + + + +  

 
    = … 

 
    ( )2 2 3

0 1 1 1 1 1 2 1 31 ... ...t t t tφ φ φ ε φ ε φ ε φ ε− − −= + + + + + + + +  
 

    20
1 1 1 2

1

...
1 t t t
φ ε φ ε φ ε
φ − −= + + + +

−
  . 

 
 
(iii) We let 2

εσ  denote the common variance of the { }tε . 
 
 

For AR(1), we have 
 

( )Cov ,t t rY Y −  
 

2 20 0
1 1 1 2 1 1 1 2

1 1

Cov ... , ...
1 1t t t t r t r t r
φ φε φ ε φ ε ε φ ε φ ε
φ φ− − − − − − −

⎛ ⎞
= + + + + + + + +⎜ ⎟− −⎝ ⎠

 

 
[using (ii) above]. 
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Putting r = 0 gives ( ) ( )
2

2 2 4
1 1 2

1

Var 1 ...
1tY ε

ε
σσ φ φ
φ

= + + + =
−

. 

 
[Note:  this also follows directly from the expression at the end of part (ii), as 
the { }tε  are uncorrelated.] 

 

Putting r = 1 gives ( ) ( )
2

2 2 4 1
1 1 1 1 2

1

Cov , 1 ...
1t tY Y ε

ε
σ φσ φ φ φ
φ− = + + + =

−
. 

 

Putting r = 2 gives ( ) ( )
2 2

2 2 2 4 1
2 1 1 1 2

1

Cov , 1 ...
1t tY Y ε

ε
σ φσ φ φ φ

φ− = + + + =
−

. 

 

In general, we get ( )
2

1
2

1

cov ,
1

k

t t kY Y εσ φ
φ− =

−
. 

 
Thus the autocorrelation function is 1 .kφ  

 
The partial autocorrelation function is a decaying function. 

 
 
 

For MA(1), we have ( ) ( ) ( )2 2
0 1 1 1Var Var 1t t tY εφ ε φ ε φ σ−= + + = + , as the { }tε  

are uncorrelated. 
 

( ) ( )0 1 1 0 1 1Cov , Cov ,t t r t t t r t rY Y φ ε φ ε φ ε φ ε− − − − −= + + + +  
 

          
2

1 for 1
0 otherwise

rεσ φ⎧ =
= ⎨
⎩

 

 

Thus the autocorrelation function is 1
2

11
φ
φ+

 for r = 1, and 0 otherwise. 

 
The partial autocorrelation function has value 0 for r ≥ 2 . 
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(iv)(a)  This is ARMA(1), a mixture of AR(1) and MA(1). 
 
 
 
      (b) ( ) ( )120 0.8t tE Y E Y −= +  and so by stationarity we have ( ) ( )20 0.8t tE Y E Y= + , 
 

 so E(Yt) = 20/0.2 = 100. 
 

Again using stationarity, we have 
 

( ) ( ) ( ) ( )2 2Var 0 0.8 Var 1 0.04 (2 0.8 0.2)t tY Y εσ= + + + − × ×  
 

which gives ( ) 2Var 2tY εσ= . 
 
 
 
      (c) The graphs are only intended as rough sketches.  The PACF decays more 

quickly than the ACF. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (d) The ACF and PACF may suggest a simple AR(1) or MA(1) model.  If not, 

possibilities are AR(m) or MA(n) or a mixture ARMA(m, n).  It is usually 
sensible to begin with as simple a model as possible and fit it, then examine its 
goodness of fit and the residuals.  If necessary, more complicated models 
should be tried. 

 
 

etc etc

ACF PACF 



Graduate Diploma, Applied Statistics, Paper I, 2007.  Question 2 
 
 
(i) Often, as in the case in part (ii), a set of data will show several substantial 

correlations between the p variables in the study.  Principal component 
analysis aims to explain the relations among these p variables in terms of 
fewer than p components which are uncorrelated linear combinations of them. 

 
(ii) (a) All correlations between pairs of variables are positive.  There are very 

high correlations between POP and EMPLOY and between SCHOOL 
and HOUSE.  There are quite high correlations between SCHOOL and 
SERVICES and between SERVICES and HOUSE.  Of the remaining 
correlations, some are moderate and some very low. 

 

A possible subset of strongly correlated variables would be POP and 
EMPLOY;  another would be SCHOOL, SERVICES and HOUSE. 

 
(b) Principal components analysis using a covariance matrix is heavily 

influenced by the units in which the variables have been measured.  
Here the measurement scales are quite different;  it is essentially 
meaningless to combine the original variables.  Use of the correlation 
matrix corrects for this by "standardising" each variable initially. 

 
(iii) (a) These are the eigenvalues and corresponding eigenvectors of the 

correlation matrix S, found in the usual way by solving 0λ− =S I  and 
then, for each eigenvalue λ, finding the eigenvector from Sx = λx. 

 
(b) The first principal component is (as is often the case) a weighted 

average of all the variables, with SERVICES having the largest 
coefficient and thus dominating the combination.  It may be interpreted 
as measuring, in some sense, the overall numbers of people in the 
areas, the availability of professional services and prosperity in terms 
of house values.  The second principal component is a contrast 
between (POP, EMPLOY) and the other three variables (SCHOOL, 
SERVICES, HOUSE), though SERVICES has only a small weighting.  
This may be interpreted as numbers of people versus some aspects of 
socio-economic status. 

 
(c) Using the correlation matrix, the sum of all the eigenvalues is the 

number of variables, here 5.  The sum of the eigenvectors for the two 
components that have been used is 2.8733 + 1.7966 = 4.6699.  Thus 
these two components explain 4.6699/5 = 93.4% of the standardised 
variance. 

 
(d) The first two principal components together leave very little of the total 

variation unexplained.  There will be no other comparisons of 
noticeable size to be found.  Because so little variation is left 
unexplained, the choice of only two principal components in this case 
seems justified. 
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(e) In general this simple criterion, by itself, is not best, as it merely gives 

those whose contribution has been "above average" when using the 
correlation matrix.  If, for example, all but one of the eigenvalues had 
been only slightly above 1, with the last being very small to balance, 
interpretation would have been relatively vague – none of the 
components would be "more important" than the others (apart from the 
last).  There is also the point that the small eigenvalues and 
corresponding eigenvectors occasionally give useful information, 
pointing to redundant variables which need not be measured in future 
studies.  The purpose of the study and the nature of the variables must 
always be kept in mind. 
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(i) Group is coded simply as (0, 1).  The three X variables are all continuous 

measurements, and a fitted model may well give some predictions outside the 
range [0, 1] altogether.  The residuals are very unlikely to be Normally 
distributed or to have constant variance. 

 
 
 
(ii) Discriminant analysis assumes that the data in each group follow a 

multivariate Normal distribution with the same variance-covariance matrix.  
(There is a degree of robustness to lack of Normality).  It aims to find a linear 
function of the p measured variables (x1, x2, …, xp) such that the ratio (between 
groups variance) / (within groups variance) is maximised. 

 
The method of finding the discriminant function, using ( )1

1 2
−= −a S x x  where 

S is the pooled variance-covariance matrix, is illustrated in part (iii)(b) below. 
 

An item should be assigned to group 1 if the x readings for it, inserted into the 
discriminant function, lead to a value nearer to 1z  than to 2z , where iz  is the 
value of the discriminant function at the mean values of the x variables in 
group i.  (See part (v) below.) 

 
 

Logistic regression fits a model 
 

0log ,
1 i i

i

p x
p

β β
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
∑  

 

where p is the probability that an item is in group 1. This leads to 
 

p = ( ) ( )
( )

0

0

exp
group1

1 exp
i i

i i

x
P

x
β β
β β
+Σ

=
+ +Σ

x  

 

and 
 

( ) ( )0

1group 2
1 exp i i

P
xβ β

=
+ + Σ

x  

 
An item should be assigned to group 1 if the x readings for it, with the 
estimated values of the βs, lead to 0 0i ixβ β+Σ > .  (See part (v) below.) 

 
Fewer assumptions are required by this method, but the fit of the logistic 
regression model should be checked. 
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(iii) (a) There are 16 degrees of freedom for the items in the variance-
covariance matrix of group 1 and 14 for those of group 2.  The matrix 

S is pooled from S1 and S2 as ( )1 2
1 16 14 .
30

= +S S S  

 
The entry 20.12 for the pooled covariance between X1 and X2 is found 

as ( )1 (16 22.154) (14 17.794) .
30

× + ×  

 
 

(b) ( )1
1 2

−= −a S x x  
 

  
0.0278 0.0273 0.0047 10.91 0.088
0.0273 0.0959 0.0160 6.643 0.225
0.0047 0.0160 0.0300 7.15 0.057

− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
so the discriminant function is 1 2 30.088 0.225 0.057x x x− − − . 

 
 
 
(iv) The model fitted (with sensible rounding of the coefficient values) is 
 

1 2 3log 47.700 0.102 0.220 0.097 ( )
1

p x x x a
p

⎛ ⎞
= − − − =⎜ ⎟−⎝ ⎠

x ,  say. 

 

and we have  P(group 1) = 
( )

( )1

a

a

e
e+

x

x    and   P(group 2) = ( )

1
1 ae+ x  . 

 
None of the coefficients of x-variables are significant.  The constant is 
significantly different from 0 but its value has a very wide confidence interval.  
Models with a single x-variable might be examined to see if the full model is 
actually any better than a simpler one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Solution continued on next page 
 



(v) Discriminant analysis gives the following value for the discriminant function: 
 

( ) ( ) ( )0.088 175 0.225 71 0.057 133 38.956.− × − × − × = −  
 

To find whether this is nearer to 1z  than to 2z  (see part (ii) above), first find 

their mean  ( )1 2
1
2

z z+  
 

( ) ( ) ( ){ }1 0.088 174.82 185.73 0.225 69.824 76.467 0.057 130.35 137.50
2

= − + − + − +

 
39.956= − . 

 
So assign to group 1 (since –38.956 > –39.956, and it is clear from the figures 
that 1z  > 2z ). 

 
 

Logistic Regression gives 
 

( ) 47.700 (0.102 175) (0.220 71) (0.100 133) 0.93 0a = − × − × − × = >x , 
 

so assign to Group 1. 
 
 
 
(vi) There must be doubt whether the separate variance-covariance matrices are the 

same, so the logistic regression may be preferred  –  though a check of the fit 
of the logistical regression model should be undertaken. 

 
 
 



Graduate Diploma, Applied Statistics, Paper I, 2007.  Question 4 
 
 
(i) We have that ijC  is distributed as Poisson ( ).iλ   There are Ni policyholders in 

cell i and the Cij quantities for each of them are independent, so 
 

( )
1

~ Poisson
iN

i ij i i
j

C C N λ
=

=∑  
 

and thus the mean of the number of claims in cell i is Niλi. 
 
 
(ii) A policyholder may make more than one claim, even if this is not very likely.  

Using the Poisson distribution allows for this, whereas the binomial does not, 
except as an approximation in a fairly large population with very small 
probability of repeat claims. 

 
 

(iii) Writing Cij as yi, the Poisson model is ( )
!

i iy
i

i
i

ef y
y

λ λ−

= . 

 

Thus ( )log log log !i i i if y yλ λ= − + − , so the natural link function is log iλ  . 
 

However, we observe the Ci as defined above, not the Cij.  So we can only fit a 
model to i i iNθ λ= , which gives log log logi i iNθ λ= + ;  so log Ni is required 
as an offset for the model. 

 
 
(iv) Following through the order as given in the question for terms to be added to 

the model, we examine the changes in scaled deviance.  Each factor has 4 
levels, so introducing the main effect of any new factor will use up 3 df, and 
correspondingly for interactions. 

 

Upper 5% points are 7.815 for 2
3χ  and 12.592 for 2

6χ . 
 

 
Similarly 5 → 6 and 6 → 7 are not significant changes. 

 
Thus the most parsimonious model is 4, with only the three main effects.  The 
residual df for this model will be 43 – 1 (for the constant) – 9 (for the main 
effects) = 54.  Thus for this model we have (scaled deviance) ÷ df = 51.01/54 
< 1, indicating that the model might be acceptable. 

 
 

Solution continued on next page 
 

Model Change in scaled deviance Change in df  
1 → 2 238.16 – 225.57 = 12.59  3 Significant 
2 → 3 225.57 – 137.39 = 88.18  3 (Very highly) significant 
3 → 4 137.39 –   51.01 = 86.38  3 (Very highly) significant 
4 → 5 51.01 –   40.06 = 10.95  6 Not significant 



(v) The parameter for DIST = 1 is 0.  The parameter estimates for DIST = 2 and 
DIST = 3 do not differ significantly from 0.  That for DIST = 4 is highly 
significantly different from zero;  so this district seems to be very different 
from all the others.  A possible recoding is therefore to code the fourth district 
as 1 and all the others as 0. 

 
The AGE coefficients seem to decrease linearly.  Thus age could be treated as 
a covariate with values 1, 2, 3 and 4, rather than as a factor. 

 
 



Graduate Diploma, Applied Statistics, Paper I, 2007.  Question 5 
 
 
(i) Backward elimination starts from the full model containing all variables and 

removes terms one by one;  at each stage the term which makes the least 
difference in the model sum of squares is removed.  As shown in part (ii), a 
partial F test is used to check this.  Eventually there will be no more terms 
which can be removed without significantly altering the sum of squares, and 
the model current at that stage is accepted. 

 
Disadvantages are that the method works in an "automatic" way which does 
not use knowledge about what the variables actually are;  and that once a 
variable has been eliminated it cannot be tried again in a different combination 
(as is done by the "all possible regressions" method). 

 
It may be preferred to forward selection since it does necessarily include all 
the variables at the beginning of the process, whereas forward selection may 
not test some of the variables (even some that may in fact be important) at all. 

 
Another advantage is that although it begins with the "full" model, it does not 
require so much computing as the "all possible regressions" method. 

 
Multicollinearity remains a problem with backward elimination. 

 
 
(ii) [Note.  This is a rather small data set for this purpose.] 
 

First, the residual mean square from the full model is 2715.76 – 2667.90 = 
47.86 with 8 df, so we initially take 47.86/8 = 5.9825 as the residual mean 
square. 

 
The smallest change from the full model omits X3.  It reduces the model SS by 
0.11.  Using the "extra sum of squares" principle, we consider 0.11/5.9825 
which is approximately 0.02 and clearly not significant on F1,8.  This means 
that the model sum of squares has not been reduced significantly, so we use 
this new model (i.e. containing X1, X2 and X4) as the basis for the next step. 

 
Omitting X4 gives the smallest change in the model sum of squares (2667.79 – 
2657.90 = 9.89).  This is to be compared with the residual from the (X1, X2, 
X4) model which is 2715.76 – 2667.79 = 47.97 with 9 df.  So we consider 
9.89/(47.97/9) = 1.86, not significant on F1,9.  So we now consider the (X1, X2) 
model. 

 
The smallest change is by removal of X2, the change being 2657.90 – 1809.40 
= 848.5.  This should be compared with the residual from the (X1, X2) model, 
which is 2715.76 – 2657.90 = 57.86 with 10 df.  So we consider 848.5/(5.786) 
= 146.6, which is extremely highly significant on F1,10.  Thus we do not 
remove X2, and the final model is (X1, X2). 
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(iii) Any existing knowledge of relations between Y and the Xs is valuable 
(especially when given only a small data set, as here).  We should not operate 
merely from the sums of squares alone. 

 
Note that the first step in the above method showed very little to choose 
between three of the 3-variable models.  Similarly for the final model the sums 
of squares show little to choose between (X1, X2) and (X1, X4);  indeed, (X2, 
X3) also looks worthy of consideration even though X3 had been eliminated in 
the first step.  Note also that forward selection would have started with X4  –  
but this was eliminated in the backward selection! 

 
There are likely to be correlations among the Xs which could indicate that 
some pairs are giving almost the same information  –  possibly X2 and X4 in 
this example.  A correlation matrix (see question 2) or scatter diagrams (see 
question 6) will often help in deciding how to proceed. 

 
There is also the point that some variables may be easier and quicker to 
measure, or known to be more reliable. 

 
 
(iv) (a) The statement is rather over-emphatic but contains good sense.  For a 

large set of data, results should not be "wildly" wrong;  but in all cases 
the above discussion (part (iii)) is relevant.  It is good practice to 
encourage an approach that is not purely automatic/arithmetic but also 
practical, especially when a manuscript covers just one stage in a 
programme of work. 

 
(b) Various regression diagnostics are available in computer packages.  

Study of the residuals can reveal possible outliers which are unduly 
influencing results as well as checking for the Normality of residuals 
(by use of a Normal probability plot) that is assumed in F tests.  For 
particular types of work (eg time series), particular methods are 
commonly used;  likewise, Durbin-Watson tests are commonly used in 
econometrics. 
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(i) Ozone is to be taken as y, the response variable.  It is negatively correlated 

with wind, but the relation is probably curved;  it is positively correlated with 
temperature, again curvilinear.  Ozone and "rad" are related to some extent but 
the form of the relation is not at all clear. 

 
The predictor variables show some correlations, particularly between 
temperature and wind, and possibly between temperature and "rad". 

 
 
(ii) (a) An interaction is when the response to one predictor is affected by the 

level of other predictors present.  It may be modelled as a product of 
predictors, as shown in part (ii)(b) below. 

 
(b) A suitable model is 

 

    0 1 2 3 12 13 23 123( ) ( ) ( ) ( )y t w r tw tr wr twrβ β β β β β β β ε= + + + + + + + +  
 

where t represents temperature, w wind and r "rad", the β terms are all 
constants and ε is a Normally distributed residual (error) term with 
mean 0 and constant variance σ 

2.  The terms with βi represent main 
effects, those with βij represent two-variable interactions and that with 
βijk represents the three-variable interaction. 

 
 
(iii) Examine interactions, starting with the highest (3-variable) one.  The t value 

for this is not significant, so proceed to 2-variable interactions.  Here, no 2-
variable interactions appear significant either.  So next examine the quadratic 
terms followed by the linear ones. 

 
 
(iv) All of the terms in this model are statistically significant, the quadratic 

component of t appearing stronger than the linear part.  R2 is 71%, which is 
reasonably good.  However, the plot of residuals against fitted values shows 
non-constant variance, with larger fitted values having more variable residuals, 
so the standard errors in the table, and any inferences based on them, are likely 
to be unreliable.  The Normal plot is curved, not straight, suggesting non-
Normality of the residuals.  All in all, the validity of the fitted model is 
uncertain.  Perhaps there are some particularly influential values, but the 
overall apparent poor fit of the model needs addressing first. 

 
 
(v) Based on the pattern in the residuals, log y may sensibly be tried as a more 

satisfactory response variable. 
 

The outliers suggested by the Cook's distance diagram should be examined to 
see what, if anything, is special or different about those data items.  Consider 
whether any should be removed from the set of 111 data items (3 in 111 is not 
necessarily serious).  Finally carry out the same checks for the model using 
log y as have been done for y. 
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(i)  

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10

x

Y

 
 

There is evidence of non-linearity, possibly consistent with two straight lines 
as suggested in the question (one for x from 1 to 5, the other for 5 to 9, the 
second having smaller gradient that the first).  A possible alternative would be 
a quadratic in x, or Y = log x. 

 
(ii) The model fitted here is one with two straight lines with appropriate dummy 

variables X1 and X2:- 
 

0 1 1 2 2Y X Xβ β β ε= + + + . 
 

The first of the given columns corresponds to the constant term β0, which 
gives the expected value of Y when X1 = X2 = 0 (i.e. at x = 5).  The second 
represents the values of the first dummy variable (X1 = –4, –3, –2, –1, 0, 0, 0, 
0, 0) with β1 being the gradient of the first line segment, and similarly for the 
third column and the second line segment (X2 = 0, 0, 0, 0, 0, 1, 2, 3, 4,).  The 
model ensures that the lines intersect at X1 = X2 = 0 (i.e. at x = 5). 

 
 
(iii) The model is the same but the coding is different:  the new X1 is simply the old 

X1 plus 5.  β0 is now the intercept at x = 0.  β1 and β2 are as in part (ii). 
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(iv) We minimise ( )
9

2
0 1 1 2 2

1
S Y X Xβ β β= − − −∑ . 

 
We do this by setting derivatives = 0. 

 

    ( )0 1 1 2 2
0

2S Y X Xδ β β β
δβ

= − − − −Σ ,  so we have 0 1 1 2 2
ˆ ˆ ˆ0 9Y X Xβ β β= − − −Σ Σ Σ . 

 

    ( )1 0 1 1 2 2
1

2S X Y X Xδ β β β
δβ

= − − − −Σ ,  so 2
1 0 1 1 1 2 1 2

ˆ ˆ ˆ0 X Y X X X Xβ β β= − − −Σ Σ Σ Σ . 

 

    ( )2 0 1 1 2 2
2

2S X Y X Xδ β β β
δβ

= − − − −Σ ,  so 2
2 0 2 1 1 2 2 2

ˆ ˆ ˆ0 X Y X X X Xβ β β= − − −Σ Σ Σ Σ . 

 
 

Thus the normal equations are 
0 1 2

0 1

0 2

ˆ ˆ ˆ79.6 9 10 10
ˆ ˆ41.0 10 30

ˆ ˆ128.7 10 30

β β β

β β

β β

⎧ = − +
⎪⎪− = − +⎨
⎪ = +⎪⎩

 

 
 

Solving these three simultaneous equations gives 
 

0 1 2
ˆ ˆ ˆ9.871, 1.924, 1.000β β β= = = . 

 
 
(v) (a) One possibility, which would ideally need a few more data points, 

would be to fit a line to the first four points, another to the last four, 
and ignore the middle one.  However, the present data suggest that 
x = 5 is part of the second line;  there is perhaps more doubt as to 
whether it is part of the first. 

 
With the present data set, the design matrix could be altered to have an 
intersection not at x = 5 but at a value either side of it to be found by 
trial and error. 

 
(b) Model-fitting can be investigated statistically by looking at the 

residuals and through other diagnostics commonly given by computer 
programs.  Ideally, though, choice of model should depend also on 
what is known about the nature of the data, i.e. the context of the real 
problem from which the data have arisen.  For example, experience is 
that some medical data seem to contain "change points" where the 
direction of a linear relation changes.  Also, use of logarithmic scales 
may be (at least) as good as fitting (say) a quadratic relationship, and 
such scales are often easier to explain in biological or medical contexts. 

 



Graduate Diploma, Applied Statistics, Paper I, 2007.  Question 8 
 
 
(i) The model is as follows. 
 

ijkly μ=       Overall mean 
 

  iα+       Fixed effect of ith treatment, i = 1, 2, with 0iαΣ =  
 

  jc+       Random effect of jth clinic, j = 1, 2, …, 8 
 

  ( )j kd+       Random effect of doctor k at clinic j, k = 1, 2, 3 
 

  ( )jk lp+       Random effect of patient l of doctor k at clinic j, l = 1, .., 4 
 

  ijklε+       Residual 
 

The residuals are independent N(0, σ 2) random variables. 
 

The three random effects are independent Normal random variables with mean 
0 and variances respectively 2 2 2, ,C D Pσ σ σ . 

 
These sets of random variables are all mutually independent. 

 
Note that there are 96 patients, 24 doctors and 8 clinics. 

 
 
(ii) The analysis of variance table is as follows.  A column of expected mean 

squares (E[MS]) is inserted in the table. 
 
 

Source of variation df Sum of 
squares 

Mean 
square E[MS] 

Between treatments   1   4240.04   
Between clinics 
within treatments   6   2599.49 433.248 2 2 2 24 12 48P D Cσ σ σ σ+ + +

Between clinics   7   6839.53   
Between doctors 
within clinics 16   7429.58 464.349 2 2 24 12P Dσ σ σ+ +  

Between doctors 23 14269.11   
Between patients 
within doctors 72 25236.88 350.512 2 24 Pσ σ+  

Between patients 
(total) 

95 39505.99   

 
 
Solution continued on next page 
 



As there is no replication (patients are only examined once), σ 
2 cannot be 

estimated.  (This term could perhaps be omitted from the model, but it should 
be retained as it is a part of the patient variation.) 

 
2 24 Pσ σ+  is estimated by 350.512. 

 

Estimate of 2
Dσ  is ( )1 464.349 350.512 9.49

12
− = . 

 

Estimate of 2
Cσ  would be ( )1 433.248 464.349

48
− , but 2

Cσ  cannot be 

negative, so the estimate is taken as 0. 
 

Thus we may conclude that the evidence suggests that there is no variability in 
the population of clinics, but there is variability in the population of doctors 
within clinics. 

 
 
(iii) The research worker's F1,94 result must have come from comparing the 

treatments with all other variation after it has been pooled.  The sum of 
squares with 94 df would be 39505.99 – 4240.04 = 35265.95 with mean 
square 375.17.  So his F statistic would be 4240.04/375.17 = 11.30, which is 
very close to the 0.1% critical point (11.57 for F1,90). 

 
Pooling in this way is not valid in general, as it ignores possible consistent 
sources of variation which are not part of the residual error. 

 
 
(iv) We cannot estimate the basic measurement variation σ 2 (see part (ii) above). 
 

The effects of treatments and clinics are confounded;  treatments A and B 
should have been studied at all clinics (or, at the very least, both of them at 
one of the clinics). 

 
To regard "clinics" as a random effect may be valid in a large area.  "Doctors" 
seems less satisfactory as a random effect since at appears that only very small 
numbers of doctors were available at each clinic.  We cannot say whether 
doctors choose their own patients genuinely at random;  they may perhaps 
deliberately avoid – or deliberately choose – some whom they consider 
extreme for some reason.  Presumably plenty of patients are available, but for 
the choice to be random it should have been made by someone else using a 
some form of anonymous list of those available. 

 


