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i.e. a product of a function of θ and T with a function of x.  Hence by the 
factorisation theorem, T is sufficient for θ. 
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Setting this equal to zero gives ˆnθ t= , i.e. ˆ t
n

θ = . 
 

It may easily be verified (e.g. by considering the second derivative) that this is 
indeed a maximum, and so the maximum likelihood estimator of θ is T/n. 

 

Maximum likelihood estimators are function-invariant, so m ˆ /T ne e eθ θ− − −= = . 
 
 
(iii) T has the Poisson distribution with parameter nθ. 
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The sum here is the sum of probabilities for the 
Poisson((n – 1)θ ) distribution and is therefore 1 
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so long as T > 0;  note that, since T has a Poisson distribution, P(T > 0) > 0.  
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(i) The Cramér-Rao result relies on regularity conditions of the density function.  
For the uniform distribution, the range of values for which the density is non-zero 
depends directly on the parameter being estimated.  Hence the regularity conditions 
(e.g. the ability to change the order of integration and differentiation) will not hold. 
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2̂ max iYθ = = X .  [Note that the pdf of Y, g(y), is given in the question.] 
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(iii) In each case, variance and bias → 0 as n → ∞, so all three estimators are 
consistent. 
 
 

(iv) The efficiency of 1̂θ  relative to 3̂θ  is 
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Therefore the Fisher information is 
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information per observation). 
 
 
 
(iv) An approximate (large-sample) 90% confidence interval for θ  is 
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(i)      When σ = 1, the two parts x ≤ 0 and x > 0 combine to give N(0, 1). 
 
 
(ii)     In general, the likelihood for a random sample of n observations x1, x2, …, xn is 
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Thus, if L1 and L0 are the likelihoods under H1 and H0 [H0 is σ = 1, H1 is σ = σ*], we 
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The Neyman-Pearson approach is to reject H0 when L1/L0 is large.  Since σ* > 1, the 
likelihood ratio here is an increasing function of Σ+xi

2.  So we reject H0 for Σ+xi
2 > k, 

where the value of k is chosen according to the required significance level for the test. 
 
 
(iii) The form of this test does not depend on the actual value of σ*, so the same 
test is appropriate for all σ*.  The test is therefore uniformly most powerful for testing 
against H2 : σ > 1. 
 
 
(iv) H0 : σ = 1;  H3 : σ ≠ 1.  We have n = 30 and Σ+xi

2 = 80.  The likelihood ratio 
test of (ii) is used with ˆ 2.σ =  
 

The likelihood ratio is ( )1 1
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∴ 2 log 35.67λ = .  On H0, , so this result is very highly significant and 
there is very strong evidence against H

2
12 log χλ ∼

0. 
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(i) Let Xj be the number of faulty items in stage j (j = 1, 2, 3).  Xj is approximately 
Poisson with parameter λ = 30p. 
 
Let N be the number of items sampled in total. 
 
N = 30 if X1 = 0 (accept) or X1 ≥ 2 (reject). 
 

( ) ( ) ( )1 1 130 0 or 2 1 1 1P N P X X P X e λλ −∴ = = = ≥ = − = = − . 
 
N = 60 if X1 = 1 and X2 = 0 (accept) or X2 ≥ 3 (reject). 
 

( )
2

60 1
2
eP N e e

λ
λ λ λλ λ

−
− −⎧ ⎫

∴ = = − −⎨ ⎬
⎩ ⎭

. 

 
N = 90 if X1 = 1 and X2 = 1 or 2 (i.e. if N ≠ 30 or 60). 
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(ii) We seek to maximise P(N = 90).  We have 
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check that this is indeed a minimum.] 
 
Thus we have λ = 1.186, so p = λ/30 = 0.040. 
 
 
 
 
(iii) P(accept batch) 
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Part (a)
 
In Bayesian analysis, a parameter θ  that is being estimated is assumed to be described 
by a probability distribution, based on existing knowledge – this is the prior 
distribution.  A sample of data is then obtained, from a population indexed by θ, and 
combined with the prior distribution using Bayes' theorem to give a posterior 
distribution (see (b) for the method).  If the posterior distribution is in the same family 
as the prior, we have a conjugate family of distributions. 
 

For example, Normal prior + Normal data → Normal posterior.  In (b) the gamma 
distribution is found conjugate for Poisson data. 
 
 
Part (b) 

θ  has prior distribution ( ) ( )
1eg
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α

− −
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i.e. it is gamma with parameters ixα +Σ  and nβ + .  With the given α and β  this is 

gamma ( )1
22 ,ix n+Σ + .  

 
(ii) Using the squared error loss function, the Bayes estimator is the posterior 
mean. 
 
The moment generating function (quoted in the question) may conveniently be used to 
find the mean of a gamma distribution:- 
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.     Hence the Bayes estimator of θ  is (2 + Σxi)/( 1
2  + n). 
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(a) Suppose that X follows a distribution whose pdf contains a parameter θ, and 
X = (X1, X2, …, Xn) is a sample of data from this distribution.  A pivotal quantity is a 
function of the data and the parameter whose distribution is known and fully 
specified.  Thus a pivotal quantity Q(X, θ ) must follow a distribution which is 
independent of the value of θ, i.e. has the same distribution for all values of θ. 
 
For example, in N(μ, σ 2), the t statistic ( X μ− )/(S/ n ) is a pivotal quantity because 
its distribution does not depend on μ (or σ 2). 
 
For a pivotal quantity Q, it is possible to find constants a and b such that P(a ≤ 
Q(X, θ ) ≤ b) is a chosen "confidence" value.  For example, for the t statistic as above, 
 

( )1/ n
XP a a P a t a
S n

μ
−

⎛ ⎞−
− ≤ ≤ = − ≤ ≤⎜ ⎟
⎝ ⎠

. 

 
The chosen probability for this statement is 0.95, or other suitable value depending on 
the problem, and a is chosen accordingly.  The inequality in the bracket is then 
rewritten in terms of the parameter;  thus, for the t example, rewriting in terms of μ 

gives confidence limits 1n
sx t
n−±  for the true μ. 

 
(b) We will need  ( ) 1

0

x
P X x u du xθ θθ −≤ = =∫ . 

 
(i) Let Y = –θ log X.  Then  ( ) ( ) ( )/log 1y yP Y y P X y P X e eθθ − −≤ = − ≤ = ≥ = − . 
 

This is independent of θ, so Y is a pivotal quantity.  [It has the exponential distribution 
with mean 1.] 
 
 
(ii) The lower and upper 5% points of such an exponential distribution are 
–log 0.95 and –log 0.05,  i.e. 0.051 and 2.996. 
 

Hence 0.051 2.996 0.90
log log

P
X X

θ
⎛
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⎞
⎟ , so that the required 90% confidence interval 

for θ  is 0.051 2.996,
log logx x
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(iii) The corresponding interval for 1
θ

 is log log,
2.996 0.051

x x− −⎛
⎜
⎝ ⎠

⎞
⎟ .  For x = 0.5, the value 

of –log x is 0.6931, so the interval is (0.231,  13.59). 
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In a discussion like this, credit is gained for all relevant points made, for clarity and 
depth of explanation, and for practical as well as theoretical considerations.  The notes 
below cover a selection of points that could be made.  The solution continues on the 
next page. 
 
 
Suppose a parameter θ  is to be estimated in a statistical distribution on the basis of a 
sample of data from which suitable statistics can be obtained  –  for example, the 
sample mean to use as an estimate of central location. 
 
An estimator is unbiased if the expectation (mean) of its sampling distribution is equal 
to the parameter being estimated.  This means that the estimator "gets the right answer 
on average"  –  but individual values of it could be a long way away from the true 
value of the parameter being estimated.  Unbiasedness has some intuitive appeal, but 
is not a particularly important criterion for an estimator to possess;  biased estimators 
are often used, particularly if the bias is (in some sense) small. 
 
An estimator is consistent if the probability of it differing from the parameter being 
estimated by more than ε, a very small quantity, approaches 0 as the sample size → ∞.  
It is however easier to use a criterion based on variance:  if the variance of the 
sampling distribution → 0 as the sample size → ∞, the estimator is consistent.  [Some 
care is needed in using this criterion for biased estimators, in case the estimator is 
"homing in" on the wrong place.  Provided any bias itself → 0 as the sample size → 
∞, the criterion is satisfactory.]  Consistency is a very important criterion for an 
estimator to possess;  in most situations an inconsistent estimator would not be 
entertained, as it "gets the wrong answer in large samples". 
 
As an example, the usual estimator of μ in N(μ, σ 2) is X , and we have the standard 
results ( )E X μ=  and 2Var( ) /X nσ= .  So X  is both unbiased and consistent. 
 
As another example, an estimator of σ 2 is 21 ( in )X X−Σ .  This is not unbiased:  
standard results give that divisor n – 1 is required for unbiasedness, whereas the 
expectation of this estimator (divisor n) is [(n – 1)/n]σ 2.  But it is consistent. 
 
For unbiased estimators, the precision with which θ  is estimated is measured by the 
variance of the estimator, though if the underlying sampling distribution is not 
symmetrical the variance is less useful.  Mean square error (MSE) is a useful 
combination of bias and variance that can be used in a similar way for biased 
estimators.  If W is an estimator of θ, the MSE of W is defined as E([W – θ ]2), the 
average squared difference between W and θ.   This can be written as 
 

( ) { } {2 22[ ] Var( ) ( ) Var( ) Bias ofE W W E W W Wθ θ− = + − = + } . 
 

Thus small MSE indicates small combined variance and (squared) bias. 
 
Estimators are often compared by their efficiency  –  the reciprocal of the ratio of their 



variances if they are unbiased or their MSEs if biased.  Other things being equal, the 
more efficient estimator of a pair would be preferred. 
 
As an example, the sample median, M say, is also an unbiased and consistent 
estimator of μ in N(μ, σ 2).  Its variance can be shown to be πσ 2/(2n).  So its efficiency 
relative to the sample mean is 
 

2

2
2

2

n

n

σ

πσ π
=      –  i.e. it is less efficient than the sample mean. 

 
Provided certain "regularity conditions" are satisfied, it can be shown that there is a 
minimum below which the variance of an unbiased estimator cannot fall.  This is the 
Cramér-Rao lower bound.  If we can find an unbiased estimator whose variance 
actually attains this bound, it is likely to be very useful  –  it is a "best unbiased 
estimator". 
 
As an example, it can be shown that the Cramér-Rao lower bound for unbiased 
estimators of μ in N(μ, σ 2) is σ 2/n.  But we know that this is the variance of the 
sample mean X , so this is the "best" estimator on this criterion. 
 
It is also useful to consider sufficient statistics as the basis for best unbiased 
estimators (the Rao-Blackwell approach). 
 
Maximum likelihood estimators often have very good asymptotic (i.e. large-sample) 
properties (e.g. consistency, asymptotic unbiasedness, small asymptotic variance, 
asymptotic underlying Normality as a basis for confidence intervals), and this (as well 
as their intuitive appeal) makes them desirable.  But their properties can be far from 
optimal in small samples.  Some MLEs are very good in small samples, but unless the 
small-sample behaviour is actually examined an MLE should not necessarily be 
automatically used in preference to others.  This consideration arises, for example, in 
estimating variances. 
 
In decision theoretic analysis, the concept of admissibility can be useful, together with 
risk and loss functions. 
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