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Graduate Diploma, Applied Statistics, Paper I, 2006.  Question 1 
 
 
(i) The AR(p) time series model is 
 

0 1 1 2 2 ...t t t p t pY Y Y Y tφ φ φ φ− − − ε= + + + + +  
 

where Yt represents the series at time t and φ0, φ1, …, φp are constants.  The 
{εt} are "pure error" or "white noise" random terms, independently identically 
distributed N(0, σε

2), and not correlated with {Yt}. 
 

The MA(q) time series model is 
 

1 1 2 2 ...t t t t q tY qε θ ε θ ε θ ε− −= + + + + −

t

 
 

where {Yt}, {εt} are as above and θ1, θ2, …, θq are constants. 
 
 
 
 
(ii)(a) 15 0.3t tY ε ε −= + −  is a stationary process.  [ ] 0tE ε =  (as in part (i)), so 
 

[ ] [ ] [ ]15 0.3t t tE Y E Eε ε −= + − = 5 . 
 

Also, again using the conditions in part (i), 
 

( ) ( ) ( ) ( )2 2
1Var 0 Var 0.3 Var 1.09t t tY εε ε σ−= + + = . 

 
The autocovariance is 

 

( ) ( )1 1Cov , Cov 5 0.3 , 5 0.3k t t k t t t k t kY Yγ ε ε ε− − −= = + − + − ε − −

rwise

=

 
 

     
( )
( )

2
1

2

0.3Var 0.3 if 1
0.3Var 0.3 if 1

0 othe

t

t

k
k

ε

ε

ε σ
ε σ

−⎧− = −
⎪= − = −⎨
⎪
⎩

= −  

 

Thus the autocorrelation ρ k is 0.3 0.275
1.09

− = −  for k = ± 1, and 0 otherwise. 

 
So the partial autocorrelation function decays to 0 and is negative. 
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(ii)(b) Yt = 34 – 0.1Yt–2 + εt is stationary (this is given in the question). 
 

∴E[Yt] = 34 – 0.1E[Yt],   so [ ] 34 30.91
1 0.1tE Y = =
+

. 

 
Also, 

 

( ) ( ) ( )2 2Var 0.1 Vart tY Y εσ= + ,   so ( )
2

2
2Var 1.01

1 (0.1)tY ε
ε

σ σ= =
−

. 

 
For the autocovariance, consider 

 

( ) ( )2Cov , Cov , 34 0.1t t k t t k t kY Y Y Y ε− − − −+= − ( )20.1 cov ,t t kY Y − −= − . 
 

∴ 20.1k kγ γ −= −  and 20.1k kρ ρ −= − . 
 

However, ρ 1 = 0 and ρ 2 = –0.1.  Hence we have ρ 3 = ρ 5 = ρ 7 = … = 0, and 
also ρ 2 = –0.1, ρ 4 = (0.1)2, ρ 6 = –(0.1)3, ρ 8 = (0.1)4, … . 

 
The partial autocorrelation function cuts off sharply after k = 2 (with a 
negative spike at k = 2). 

 
 
 
 
(iii) 154 0.2t tY Y tε−= − + . 
 

( )1 0.2 54tL Y tε∴ + = +     where L represents the "backward shift" operator. 
 

( ) ( ) ( )( )( )2 32 354 1 0.2 0.2 0.3 ... 54
1 0.2

t
t tY L L L

L
ε ε+

∴ = = − + − +
+

+

3

 

 
        . ( ) ( )2 3

1 254 0.2 0.2 0.2 ...t t t tε ε ε ε− − −= + − + − +
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(i) (a) Variance and covariance depend on the units of measurement, but 

correlation does not.  These variables are in completely different units 
of measurement, and this would seriously influence the results if the 
covariance matrix were used.  There is also the issue (see (ii)(a)) of 
whether, for example, length of road should be measured in miles or 
kilometres.  It would not be appropriate to use the covariance matrix. 

 
 

(b) When the principal components are arranged in order of size of 
eigenvalues, as here, "cumulative proportions" are found by adding 
eigenvalues from the left, ending with a total (in this example) of 4, the 
number of variables.  The "proportions" for each eigenvalue here are 

 

      2.23 1.33 0.25100 55.75%, 100 33.25, 100 6.25%
4 4 4

× = × = × = , 

 
so the cumulative proportions are 55.75, 89.00, 95.25 and 100%. 

 
 

(c) Most of the variation is explained by PC1 and PC2, leaving only 11% 
for PC3 and PC4 together.  An explanation of the data might therefore 
be given in terms of these two.  The coefficients in the components are 
the weightings of the four variables in each one. 

 
PC1 is a (weighted) average of all four variables, as often happens 
when using the correlation matrix;  population is of less importance 
than the other three variables. 

 
PC2 is mainly a contrast between population and length of road.  This 
might reflect the effect of length of road outside main population 
centres. 

 
PC3 seems to be a contrast between number of drivers and (population 
density, length of road) but does not contribute much to the total.  It 
might be some form of measure of the number of drivers outside main 
population centres. 

 
PC4 is a contrast between fuel consumption and the others, but 
contributes little.  Perhaps it is mainly a contrast between number of 
drivers and fuel consumption, and thus could give a measure of the 
number of drivers with high fuel consumption. 

 
(Note that components that contribute little and might reasonably be 
ignored can sometimes give information about what is not important.) 
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(ii) (a) Since the correlation matrix has been used, changing the units as 
suggested would make no difference to the results.  Identical principal 
components and regression analyses would be obtained.  The whole 
analysis is independent of the original scales of measurement. 

 
 

(b) A simple explanation, with fairly high R2, comes from PC1, and shows 
that deaths are positively related to number of drivers, length of road 
and fuel consumption, but depend little on population density.  Adding 
PC3 and PC4 improves the explanation and leads to a very high R2.  
Note that the interpretations depend on the signs of the coefficients. 

 
 
 
 
(iii) Unless there are correlations among the predictor variables (which of course 

there often are), there is nothing to gain from using principal components.  The 
principal components themselves are uncorrelated, so this makes model 
selection easier if a "suitable" subset is known.  However, the principal 
components are not always easy to interpret as they are purely mathematical 
constructs, and thus the resulting regression models may not be easy to 
interpret.  (Note for example that the negative coefficient of PC4 in the 
regression analysis in part (ii) suggests that the number of deaths is positively 
related to drivers with low fuel consumption, which seems strange.) 

 
It can be difficult to choose a "suitable" subset of principal components.  In 
this example, PC2 appeared important in the explanation of the data in part (i) 
but did not enter the regression analysis in part (ii).  On the other hand, it can 
happen that components with low eigenvalues are important in the regression  
–  as appears to have happened with PC3 and PC4 here.  One way to try to 
deal with this is to include the response variable in the principal components 
analysis and select PCs with high coefficients of the response variable and 
large eigenvalues;  but there is no guarantee that important regression 
variables will be identified. 
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(i) Both methods can be carried out on data from groups of items for which there 

are multiple measurements.  In cluster analysis the groups are not known 
already, but are constructed from the data;  the analysis investigates possible 
groupings, based on the multiple measurements.  Discriminant analysis is 
carried out when the (two or more) groups are known already and the aim is to 
find the (linear) combination of the variables which best separates the items 
into their groups.  The method assumes that the data in each group are from 
multivariate Normal distributions with similar variance-covariance structures. 

 
As an example, discriminant analysis would be appropriate for distinguishing 
between those animals which survive in a hard environment and those which 
do not, using a range of physiological measurements on bodies.  A suitable 
discriminatory combination of these measurements would have been found 
from several species for which it was known whether or not they survive.  The 
same combination would then be applied to measurements on a different 
species to give a prediction of whether or not it would be likely to survive. 

 
 
(ii) (a) For d(x, y) to be a proper distance measure for X and Y, we require:  

d(x, x) = 0;  d(x, y) = d(y, x);  d(x, y) ≤ d(x, z) + d(z, y) for all Z. 
 

Certainly d(A, A) = d(B, B) = d(C, C) = 0, from the diagonal entries. 
 

Also, d(A, B) = 3.9 = d(B, A);  and similarly for d(A, C) and d(B, C). 
 

Finally, d(A, C) = 5.5, with d(A, B) + d(B, C) = 3.9 + 3.0 = 6.9 > 5.5; 
d(B, C) = 3.0, with d(B, A) + d(A, C) = 3.9 + 5.5 = 9.4 > 3.0;  and 
d(A, B) = 3.9 with d(A, C) + d(C, B) = 5.5 + 3.0 = 8.5 > 3.9. 

 
(b) At stage 1, items A and H have distance 1.0 and these form a cluster.  

Cluster 2 is D and E with distance 1.7, so stage 2 has two clusters, AH 
and DE.  The next cluster is BC with distance 3.0.  The next distance is 
3.7, for AF and for BH;  as shown in the dendrogram, we therefore 
combine ABCFH as a cluster at this distance, from which the cluster 
DE is still separate.  The next distance is 4.6, for CD and CG;  thus at 
this distance we are down to a single cluster. 

 
[Note.  In any practical case we may specify the number of clusters 
required as a reasonable summary of the data or we may specify the 
maximum distance for combining clusters.  As an illustration of the 
latter, suppose we specified distance 3.1;  at this distance there are 3 
clusters, AH, BC and DE, and the other items stand on their own.] 

 
(c) The dendrogram appears rather "straggly".  A and H seem closely 

similar, as do D and E, but otherwise there are no very clear and 
concise clusters.  There is not really any strong evidence of "distinct 
categories" by the single linkage cluster analysis used here, though 
different methods of clustering might give different structures. 

 
 

The dendrogram is on the next page 
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(i) (a) The probability function of the binomial distribution B(m, π) written in 

exponential form is 
 

      ( ) ( ) ( ), exp log log log 1 log 1
m

f y y m y
y

π π π π
⎡ ⎤⎛ ⎞

= + + − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

 

so    ( ) ( )log , log log 1 constant
1

i
i i i i i

i

f y y mππ π
π

⎛ ⎞
= + − +⎜ ⎟−⎝ ⎠

 . 

 
As yi is on the right of this equation, it is in canonical form, and the 
multiplier of yi is the natural parameter, which is therefore 

 

log
1

i

i

π
π

⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

 

[This is the log-odds, or logit.]  The generalised linear model sets this 
link function equal to the linear predictor. 

 
(b) The odds is the ratio of probabilities of "success" and "failure" for Yi, 

i.e. πi/(1 – πi).  The log-odds is simply the logarithm (base e) of this, as 
used in the link function. 

 
After the generalised linear model has been fitted, the (estimated) 
value of ηi is obtained  –  this is the estimate of the log-odds.  We have 

 

( )log exp
1 1

i i
i i

i i

π πη η
π π

⎛ ⎞
= ⇒ =⎜ ⎟− −⎝ ⎠

 

 

so the estimate of the odds is exp(ηi). 
 

Given the necessary standard errors (SE), approximate 95% 
confidence limits are "estimate ± 1.96×SE" for each of odds and log-
odds.  The details are in (ii)(c) below. 

 
 
(ii) (a) We are not told how the sampling was carried out, so the independence 

of observations is not guaranteed; neither is the randomness. 
 

The analysis would be appropriate if a random sample of data from a 
larger population has been selected, omitting multiple births (twins etc) 
and only using a mother once if she has had more than one child at 
different times [to avoid probable lack of independence].  Many 
hospitals would need to be represented in the sampling, as well as 
home births.  It would not be appropriate to use this analysis if the 
"group of women" mentioned came from a limited area, for example 
by studying all births from the local hospital over a few years. 
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(b) Step 1 chooses the single predictor variable which reduces the scaled 
deviance as much as possible from the "constant only" model.  Clearly 
this is GEST, the length of gestation period, which reduces the 
deviance by 339.37 (on 1 df).  We next consider adding AGE, and this 
step further reduces the deviance by 6.566, also on 1 df;  this is 
significant as an observation from χ2 with 1 df, so AGE should be 
included.  So we use AGE and GEST in the model. 

 
 

(c) The coding AGE = 0, GEST = 0 gives 
 

( )ˆ ˆ1.7659, SE 0.1296η η= − = . 
 

The estimate of the odds is exp(–1.7659) = 0.171. 
 

95% confidence limits for η are –1.7659 ± 1.96×0.1296, i.e. (–2.020, 
 –1.512), so the corresponding limits for the odds are (0.1327, 0.2205) 
after exponentiating. 

 
The estimate of the probability of mortality is 

 
ˆ

ˆ
0.171ˆ 0.146

1 1.171
e

e

η

ηπ = = =
+

. 

 
Similarly, the upper and lower limits of the 95% confidence interval 
for this probability are as follows. 

 

Lower limit:  0.1327 0.117
1.1327

= ;    upper limit:  0.2205 0.181
1.2205

= . 

 
 

(d) GEST is now to be coded as 1, AGE remaining zero.  The log-odds 
ratio for this group compared to the group in (c) is thus simply the 
value of the GEST parameter, i.e. –3.2886. 

 
So the odds ratio is exp(–3.2886) = 0.0373. 

 
95% confidence limits for this log-odds ratio are –3.2886 ± 
1.96×0.1846, i.e. (–3.650, –2.927).  Thus the limits for the odds ratio 
are exp(–3.650) = 0.026 and exp(–2.927) = 0.054. 
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(i)(a) The appropriate model for log(y) is log log 'i iy a bx iε= + + , where the { }'iε  

are independent identically Normally distributed errors, N(0, σ 
2). 

 
Thus for the untransformed data we have ibx

iy ae iε=  where the εi are 
lognormal. 

 
 
(i)(b) Denote log(y) by Y and log(a) by A so that Yi = A + bxi + εi'.  The normal 

equations are obtained by minimising 
 

( )2
i i

i

S Y A bx= − −∑ . 

 
Differentiating with respect to A and B leads to the following (strictly speaking 
it should be checked that these are minimising values). 

 

( )2 i i
i

S Y A bx
A
∂

= − − −
∂ ∑ . 

 

Setting this equal to 0 gives ˆˆY A bx= +  as one normal equation.  So 
ˆÂ Y bx= − . 

 

( )2 i i i
i

S x Y A bx
b
∂

= − − −
∂ ∑ . 

 

Setting this equal to 0 gives 2ˆˆ
i i i i

i i i

x Y A x b x= +∑ ∑ ∑ . 
 

Thus  ( ) 2ˆ ˆ
i i i ix Y Y bx x b x= − +∑ ∑ ∑  

 

2 2 2
2

( )( )ˆ or
( ) ( )

i i
i i

i i i i

i i i
i

x yx Y n xY x Ynb
x n x xx
n

Σ Σ
Σ − ⎡ ⎤Σ − Σ Σ

∴ = ⎢ ⎥Σ Σ − Σ⎣ ⎦Σ −
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(ii) Here we similarly minimise ( )2
ibx

i
i

S y ae= −∑ , giving two normal equations 

as follows. 
 

( )2 ii
bxbx

i
i

S y ae e
a
∂

= − −
∂ ∑ . 

 

Setting this equal to 0 gives ˆ ˆ2ˆi ibx bx
i

i i

y e a e=∑ ∑ . 

 

( )2 i ibx bx
i i

i

s y ae ax e
b
∂

= − −
∂ ∑ . 

 

Setting this equal to 0 gives 
 

ˆ ˆ22ˆ ˆi ibx bx
i i ia x y e a x e=∑ ∑   or   ˆ ˆ2ˆi ibx bx

i ii
x y e a x e=∑ ∑ . 

 
 

From the first normal equation we have   

ˆ

ˆ2
ˆ

i

i

bx
i

i
bx

i

y e
a

e
=
∑
∑

. 

 
Inserting this in the second gives 

 

ˆ ˆ ˆ2 2i i ibx bx bx bx
i i i i

i i i i

x y e e y e x e⎛ ⎞⎛ ⎞ ⎛ ⎞⎛=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝
∑ ∑ ∑ ∑ ˆ

i
⎞
⎟
⎠

 

 
(This would require an iterative method of solution such as Newton-
Raphson.) 

 
 
(iii) (a) First model:  . 0.918 ˆˆ 2.504; 1.19a e b= = =
 

Second model:  . ˆˆ 2.45; 1.20a b= =
 

The estimates are very similar. 
 

(b) The situation is not clear-cut.  The standardised residuals from the first 
model are perhaps more scattered than those from the second, and with 
an appearance of becoming less variable as x increases.  For the second 
model, there is only one outlier among the residuals but the pattern 
may be slightly skew.  The outlier in this model corresponds to the 
point where there is a slight jump in the original scatter diagram, and 
this also produces a somewhat high standardised residual from the first 
model.  Perhaps there is a very slight preference for the second model. 

 
(c) Any existing knowledge about the system will be helpful, as will any 

prior information on the error structure – is it Normal or lognormal (or 
neither)? 
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(i) The single variable which reduces the residual sum of squares most from the 

model with intercept alone is x4, so forward selection first introduces this 
variable.  It then examines adding another variable to x4.  The smallest residual 
sum of squares for x4 and one other variable is when x1 is taken with x4.  Next 
to be entered would be x2 but this does not seem to make much difference 
compared with (x1, x4).  Adding x3 as well does not seem to make a worthwhile 
difference either.  Formal tests for significance at each stage are as follows. 

 
 

(1) Adding x4.  The SS for adding x4 is 2715.764 – 883.867 = 1831.897, 
and the remaining residual then has 11 df.  So the test statistic is 

 

1831.897
1 22.80883.867
11

= , 

 

which is very highly significant as an observation from F1,11;  there is 
very strong evidence that x4 should be included in the model. 

 
(2) Adding x1.  The SS for doing this is 883.867 – 74.762 = 809.105, and 

the remaining residual has 10 df.  The test statistic is 
 

809.105
1 108.2274.762

10

= , 

 

which is very highly significant as an observation from F1,10;  there is 
very strong evidence that x1 should also be included in the model. 

 
(3) Adding x2.  The SS for doing this is 74.762 – 47.973 = 26.789, and the 

remaining residual has 9 df.  The test statistic is 
 

26.789
1 5.0347.973
9

= , 

 

which is not (quite) significant at the 5% level as an observation from 
F1,9 (the 5% critical point is 5.12).  Judged at the 5% level, there is no 
evidence that x2 should also be included in the model. 

 
 

Thus the model reached by forward selection has x1 and x4. 
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(ii) Not if there are correlations among the predictor variables.  Starting from the 
full model and omitting variables can give very different results from forward 
selection. 

 
 
(iii) Mallows' Cp is a diagnostic statistic designed to help in identifying a "best 

subset" model.  The definition of Cp is 
 

( )2 2p
p

RSS
C n

s
= − − p  

 

where 
 

n is the number of data values, 
 

p is the number of parameters (including the constant) in the model 
being investigated, 

 

RSSp is the residual sum of squares for the model being investigated, 
 

s2 is the residual mean square for the full model using all possible 
predictors. 

 
It can be shown that, for a satisfactory model, E[Cp] = p.  Looking at the 
values of Cp given in the question, this suggests that the (x1, x4) model may be 
not quite "good enough" as it has a Cp value of 5.50 as opposed to an 
expectation of 2.  All of the three-predictor models seem satisfactory apart 
from (x2, x3, x4). 

 
 
(iv) The two-predictor model (x1, x2) appears good, both from its residual sum of 

squares and from its Cp value.  It also has a higher R2 value than any of the 
other models with fewer than three predictors.  This model has not appeared in 
the forward selection because neither x1 nor x2 was the first variable chosen, 
but it appears to be the best parsimonious model. 

 
 
(v) It is always important to have information about the practical situation, to 

avoid proposing a model that researchers or practitioners in the field consider 
unreasonable.  They may do so from their general technical knowledge of the 
field and/or in the light of earlier work which has shown that some potential 
variables in fact have little relation to the response y.  Correlations among the 
x variables may, mathematically, lead to such "unreasonable" models.  If there 
is a choice, those variables that are easier and cheaper to measure accurately 
would often be preferred.  Why have the variables x1, x2, x3, x4 in the example 
been suggested? 
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(i) 

 

0
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There is a considerable amount of scatter but some indication of a weak 
positive association between y and x.  The variance of the y variable looks as if 
it could be assumed constant  –  there is no apparent pattern (such as a 
dependence on x). 

 
 
(ii) Any association that exists between y and x is not obviously curved, and does 

appear to have a linear component.  So a linear regression model seems 
reasonable.  Because there are repeat observations on y at some of the x-
values, a "pure error" term can be extracted from the residual as the sum of 
squares between these repeats (see below).  The remainder of the residual 
("lack of fit") then represents departure from linearity, which can be tested 
against the "pure error".  This should give a better test of the linear regression 
model. 

 
The model is 

 

Yij = a + bxi + εij i = 1, 2, …, 13 
 

j = 1 or 2 or 3, depending on the value of i. 
 

where 
 

xi is a value of x, 
 

Yij represent the (single or repeat) observations taken at x = xi, 
 

{εij} are independent normal N(0, σ 
2) random variation terms 

with constant variance. 
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(iii) (a) At x = 1.2, we have y = 2.2 and 1.9, with total 4.1.  So the pure error 

SS here is 
2

2 2 4.12.2 1.9 0.045
2

+ − = .  This has 1 degree of freedom. 

 
(b) At x = 4.1, we have y = 2.8, 2.8 and 2.1, with total 7.7.  So the pure 

error SS here is 
2

2 2 2 7.72.8 2.8 2.1 0.327
3

+ + − = .  This has 2 df. 

 
(c) At each x value where there are repeats, a similar calculation is carried 

out.  The sums of squares are added to obtain the total pure error SS.  
The numbers of degrees of freedom would also be added to obtain the 
total df for "pure error", which here will be 9 (this is needed below, in 
part (iv)). 

 
 

(iv) If the "pure error" SS is 4.3717, the "lack of fit" SS must be 6.6554 – 
4.3717 = 2.2837, and this will have 20 – 9 = 11 df. 

 
Hence the analysis of variance is 

 
Source of variation df Sum of 

squares 
Mean 
square 

F value 

Regression   1 2.6723 2.6723 2.6723/0.4857 = 5.50 
Lack of fit 11 2.2837 0.2076 0.2076/0.4857 = 0.43 
Pure error   9 4.3717 0.4857 = 2σ̂  
Total 21 9.3277   

 
The F value for regression (note that this is now a comparison with the pure 
error term) is referred to the F1,9 distribution.  This is significant at the 5% 
level (critical point is 5.12), so there is some evidence in favour of the 
regression model. 

 
There is no evidence of lack of fit.  (It could be argued that the lack of fit and 
pure error SSs should therefore be recombined to give the residual as before, 
with 20 df.) 

 
We note that R2 = 2.6723/9.3277 = 28.6%, which is low;  despite the absence 
of evidence for lack of fit, only about 29% of the variation in the data is 
explained by the linear regression model.  This is because the underlying 
variability (estimated by the pure error mean square) is high. 

 
 
(v) Residuals after fitting the proposed model can be examined, and any patterns 

in them noted.  Departures from the model can be detected in this way, such as 
a need for an additional term, or systematic non-constant variance, etc. 
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Part (i)
 
Totals are as follows 
 

For A  A1:  56;     A2:  78;     A3:  83. 
 

For  B  B1:  145;     B2:  72. 
 

Grand total:  217. 
 

Sum of squares of observations:  1977. 
 
 

The (corrected) total sum of squares is 
22171977 407.367

30
− = , with 29 df. 

 
The sum of squares for factor A is 
 

2 2 2 256 78 83 217 41.267
10 10 10 30

+ + − = ,  with 2 df. 

 
The sum of squares for factor B is 
 

2 2 2145 72 217 177.633
15 15 30

+ − = ,  with 1 df. 

 
The sum of squares for the interaction AB is 
 

2 2 2 2 2 2 232 24 50 28 63 20 217 SS for SS for 62.067
5 5 5 5 5 5 30

A B+ + + + + − − − = ,   
 

with 2 df. 
 
The residual SS is obtained by subtraction.  This has 29 – 2 – 1 – 2 = 24 df. 
 
A is a fixed factor in both (a) and (b) below;  its interpretation is the same in the two 
parts.  B is fixed in (a) and random in (b), so its interpretation is different in the two 
parts, and this also applies for the interaction AB. 
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(a) The model is 
 

( )ijk i j ijkij
y μ α β αβ ε= + + + +  

 

i = 1, 2, 3;   j = 1, 2;   k = 1, 2, …, 5 
 

( ) ( )0, 0, 0, 0i j ij ij
i j i j
α β αβ αβ= = = =∑ ∑ ∑ ∑ . 

 
Here μ, αi, βj, (αβ)ij are all unknown constants, representing the grand mean, the 
effect of level i of A, the effect of level j of B, and the interaction between A at level i 
and B at level j, respectively  The "error" terms {εijk} are independent Normal random 
variables, N(0, σ 2), with σ 2 constant. 
 
The analysis of variance is as follows.  A column of expected mean squares (E[MS]) 
is inserted in the table. 
 
Source of 
variation 

df Sum of 
squares 

Mean 
square 

E[MS] F value 

A   2   41.267   20.633 ( )2 2 5
2 i

2σ α×+ Σ  20.633/5.267 = 3.92  

B   1 177.633 177.633 ( )2 3 5
1

2
jσ β×+ Σ  177.633/5.267 = 33.73

AB   2   62.067   31.033 ( )2 5
2 1 ( )ij

2σ αβ×+ ΣΣ 31.033/5.267 = 5.89  

Residual 24 126.400     5.267  = 2σ̂  

Total 29 407.367    

 
 
Tests for the null hypotheses "all αi = 0", "all βj = 0", "all (αβ)ij = 0" use the given F 
values.  The upper 5% point of F2,24 is 3.40 and the upper 1% point is 5.61, so the first 
of these is significant at the 5% level and the third at the 1% level.  For F1,24, the 
upper 0.1% point is 14.03, so the second is very highly significant.  There is evidence 
that both main effects and the interaction are important. 
 
As the interaction is significant, the interpretation should be based on a 2-way table of 
AB means.  The response for B2 is much the same at each level of A;  however, for B1 
the response at A1 is well below the other two, with A3 a little larger than A2. 
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(b) The model is 
 

( )ijk i j ijkij
y μ α β αβ ε= + + + +  

 

i = 1, 2, 3;   j = 1, 2;   k = 1, 2, …, 5. 
 
 
Here μ and the αi are unknown constants, with Σαi = 0, as before, and the "error" 
terms {εijk} are independent Normal random variables, N(0, σ 2), with σ 2 constant, as 
before. 
 
The βj are uncorrelated random variables, uncorrelated with the (αβ)ij and with the 
{εijk}, with mean 0 and constant variance σB

2. 
 
The (αβ)ij represent the interaction.  For each level of A (i.e. for each i) they are 
uncorrelated random variables, uncorrelated with the βj and with the {εijk}, with mean 
0 and constant variance σAB

2.  For each level of B (i.e. for each j) they are constants 
with ( )i ij 0αβΣ = . 
 
Assumptions of Normality for the βj and (αβ)ij are added for the formal inferences, so 
that these become independent Normal random variables. 
 
 
The analysis of variance is as follows.  A column of expected mean squares (E[MS]) 
is again inserted in the table. 
 
Source 
of 
variation 

df Sum of 
squares 

Mean 
square 

E[MS] F value 

A   2   41.267   20.633 ( )2 2 2 5
25 2

AB iσ σ × α+ + Σ  20.633/31.033 
= 0.665 

B   1 177.633 177.633 2 2(5 3) Bσ σ+ ×  177.633/5.267 
= 33.73 

AB   2   62.067   31.033 2 25 ABσ σ+  31.033/5.267 
= 5.89 

Residual 24 126.400     5.267 2σ   

Total 29 407.367    

 
 
The null hypotheses are "all αi = 0", "σB

2 = 0" and "σAB
2 = 0".  The expected mean 

squares indicate how these are tested. 
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The F value to test the first null hypothesis is 0.665, which is referred to F2,2.  This is 
not significant;  there is no evidence against this null hypothesis. 
 
The F value to test the second is 33.73, which is referred to F1,24.  This is very highly 
significant (see part (a) above);  there is very strong evidence against this null 
hypothesis. 
 
The F value to test the third is 5.89, which is referred to F2,24.  This is significant at 
the 5% level (see part (a) above);  there is evidence against this null hypothesis. 
 
Estimates of σB

2 and σAB
2 can be obtained if required. 

 
 
The explanation should be in terms of there being evidence for variation among the 
effects of the levels of B in the underlying population of all such levels, and similarly 
for the AB interaction. 
 
 
 
 
 
 
 
 
Part (ii)
 
Suppose that A1, A2, A3 are three alternative cultivation treatments in an agricultural 
trial, while B1, B2 are two sites upon which that experiment is carried out.  If B1, B2 
are the only two available sites about which inferences are to be made, (a) is 
appropriate.  If B1, B2 are selected (at random) from several available sites and 
inference is to be made for the whole collection of sites, (b) is appropriate. 
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