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Setting this equal to zero gives 2ˆ
in xθ = Σ , i.e. 
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It may be verified (e.g. by considering the second derivative) that this is indeed a 
maximum, and so it is the MLE of θ. 
 
 
(iii) Since 2( )E X θ= , we immediately have ˆ( )E θ θ= , i.e. θ̂  is unbiased for θ . 
 

To find the Cramér-Rao lower bound, we first find 
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, so the Cramér-Rao lower bound is 
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Now, , using the result (given in the question) 2ˆVar( ) 2 /nθ θ= 2Var( ) 2X 2θ= , and so 
the variance of θ̂  attains the bound. 
 
 

(iv) φ θ= ;  so MLE of φ  is 2ˆ MLE of /ix nφ θ= = Σ .  Because φ  is a non-

linear transformation of θ , and θ̂  is unbiased for θ , φ̂  cannot be unbiased for φ . 
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(i) μ = E(X) = θ / 2 (from symmetry or by simple integration), so θ = 2μ. 
 
Thus the method of moments estimator is θ  = 2 X  where X  is the sample mean. 
 
( ) ( ) ( )2 2E E X E Xθ θ= = = , i.e. θ  is unbiased. 

 
 
(ii) With the given sample, x  = 0.4 and so the value of θ  is 0.8.  This is not valid 
as an estimate of θ because the largest observation in the sample is 1.0 and therefore 
we know that θ must be ≥ 1. 
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(i) The formal definition of a sufficient statistic (S) is that the conditional 
distribution of the sample X = (X1, X2, …, Xn) given the value of S (= s) does not 
depend on θ. 
 
 
(ii) If  f (x ⏐θ ) is the joint pdf of the sample X, the statistic S is sufficient for θ  if 
and only if there exist functions g (s⏐θ ) and h(x) such that, for all sample points {xi} 
and all θ, 
 
  f (x ⏐θ )  =  g (s ⏐θ ) h(x) . 
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Thus, by the factorisation theorem,  is sufficient for θ. 
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(iv) L0, i.e. the value of L when θ = 1, is ixe−Σ .  L1, the value when θ = 2, is 
exp( log )i

ixx e−ΣΣ × .  (Note that Γ(1) = Γ(2) = 1.) 
 

Thus (1

0

exp log i
L )x
L

λ = = Σ , which is an increasing function.  So the Neyman-

Pearson method rejects H0 when λ > c, where c is a constant depending on the chosen 
rejection probability α. 
 
So H0 is rejected when Σ log xi > c (not the same c), i.e. the rejection criterion is S > c. 
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(i) The median is that value of X below which half of the distribution lies, i.e. θ 
where P(X ≤ θ) = ½.  Suppose we have the null hypothesis H0 that θ = θ 0 and 
alternative hypothesis θ ≠ θ 0.  A two-sided test is thus required (the work carries 
through in the obvious way for one-sided situations).  The sign test counts the 
number, T, of the 100 observations which are less than θ (or, equivalently, more than 
θ ;  any observations which are (to the limits of accuracy of measurement) exactly 
equal to θ are commonly simply ignored).  If this is "near" to half the number of 
observations in the sample, H0 is supported;  if not, H0 is discredited.  Under H0, the 
distribution of T is binomial with n = 100 and p = ½. 
 
A test of H0 against H1 can be based directly on the binomial distribution by cutting 
off "tails" at each end of the distribution.  This is a tractable approach for small values 
of n, either using binomial tables or by calculating binomial probabilities.  A Normal 
approximation is adequate for reasonably large values of n (particularly for p = ½), 
certainly for n = 100. 
 

Thus we take T to be approximately N(np, np(1 – p)), i.e. N( 1 1
2 4,n n ). 

 

We reject H0 if 1
2T n k− ≥  where k is the smallest value having 1

2 2( )P T n k α≤ − ≤  if 
H0 is true and the test is at the level α for the probability of type I error.  Using the 
Normal approximation with inclusion of a continuity correction we have 
 

1
2

1
2 2 2

4

1 2( )
n n

n

k kP T n k
n

⎛ ⎞− + − −⎛ ⎞⎜ ⎟≤ − ≈ Φ = Φ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 .  

 

 

(ii)     With n = 100 and α = 0.05, we want 1 2 0.025
10

k−⎛ ⎞Φ ≤⎜ ⎟
⎝ ⎠

, so that 1 2 1.96
10

k−
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which gives k ≥ 10.3.  So we take k = 11 as it must be an integer, and the rule is to 
reject H0 if T ≤ 39 or T ≥ 61. 
 
 
(iii) A point estimate of a parameter, based on data from a sample, may or may not 
be very precise.  It is often more useful to have an interval estimate (L, U) where L ≤ 
(parameter) ≤ U with some specified probability.  In the parametric case, exact values 
of L and U can be found by using the same mathematics as in hypothesis testing;  for 
example, (

n
ts tsP X Xμ− ≤ ≤ + )

n
 = 0.95 for a sample from a Normal distribution 

leads to an exact 95% confidence interval for μ.  For non-parametric intervals, the 
confidence interval can only be set approximately at, say, 95% and it will contain all 
those values of the parameter which would not be rejected in a test at the 5% level. 
 
 
(iv) The required interval contains all values of θ which would not be rejected at 
the 5% level.  Consider testing H0: θ  = θ *.  Let T * be the number of observations less 
than θ *, then, as in (ii), H0 is not rejected if |T * – 50| < 10.3, leading to 40 ≤ T * ≤ 60.  
It follows that, when the sample has been ranked X(1) to X(100), the values X(40) and 
X(60) are the required ends of the interval. 
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(i) Denoting the posterior pdf by (g )θ x , we have 
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(note that ixΣ  is equal to the number of 1s that are observed). 
 

We are given that beta(a, b) has pdf proportional to ya–1(1 – y)b–1, so the 
posterior distribution is seen to be beta(2 + ixΣ , n + 2 – ixΣ ). 

 
 
(ii) With a squared error loss function, the Bayes estimator is the mean of the 

posterior distribution.  The posterior pdf is 
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(quoting standard results, or by explicitly 
evaluating the integral) 
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To find the MSE, we use MSE = (bias)2 + Variance.  As iXΣ  ~ B(n, θ ), we 

have ( ) 2

1Var (1 )
(4 )

n
n

θ θ θ= −
+

 and thus 
 

( ) ( ){ }2
2

1( ) 4 1 2 1
(4 )

MSE n
n

θ θ θ θ= − +
+

−  
 

( ) ( )2 2

2 2

4 16 14 16 16
(4 ) (4 )

nn n
n n

θ θθ θ θ θ + − −− + + −
= =

+ +
 . 



Graduate Diploma, Statistical Theory & Methods, Paper II, 2005.  Question 6 
 
 
(i) Denoting the posterior pdf by (g )θ x , we have 
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which we see to be of the form of the gamma pdf quoted in the question, 
merely with a replaced by a + n and b replaced by b + Σxi

2.  Since the prior 
and posterior are both gamma distributions, the gamma distribution is a 
conjugate prior. 

 
 
(ii) Using the expressions given in the question, 
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(iii) a = b = 1;  n = 48;  Σxi

2 = 48.0. 
 

Because a = b = 1, the prior pdf is simply ( )g e θθ −= , i.e. the exponential 
distribution with parameter 1 (so mean = 1 and SD = variance = 1). 

 
The posterior distribution is gamma with parameters 1 + 48 = 49 and 1 + 48.0 
= 49, so the mean is 1, the variance is 49/492 = 1/49 and the standard deviation 
is 1/7.  This will be approximately Normal with mean 1 and variance 1/49. 

 
[Note that the mean of both prior and posterior is 1, but the standard deviation 
of the posterior is only (1/7)th that of the prior.] 

 
Sketches have not been included here because of the limitations of electronic 
reproduction. 

 
 
(iv) Using the Normal approximation, a Bayesian 95% posterior interval for θ  is 

"mean  ±  1.96 SD",  i.e. 1 ± (1.96 × (1/7)),  i.e. (0.72, 1.28). 
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Part (a)
 
The Neyman-Pearson method uses the likelihood ratio principle.  If a random sample 
of n observations from a distribution with pdf f(x, θ ) is available, the method is based 
on the ratio 
 

1
1

2
1

( , )

( , )

n

i
i
n

i
i

f x

f x

θ
λ

θ

=

=

=
∏

∏
 , 

 

where θ 1 and θ 2 are the values of θ on the null and alternative hypotheses 
respectively. 
 
The critical region R of size α (probability of Type I error) which maximises the 
power for testing θ  = θ 1 against θ  = θ 2 is that region for which 
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As an example [but a clear description of the necessary steps, without an example, 
would be sufficient in the examination], suppose the hypotheses are θ  = 0 and θ  = 1 
in N(θ , 1).  Then 
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which is to be < k for a Neyman-Pearson test.  This gives 
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> − ,       i.e.  say  x c> . 

 
To achieve size α, we now use the distribution of X  on the null hypothesis (i.e. with 
θ  = 0), which is N(0, 1/n).  This gives 
 

0 ~ N(0,1)
1/

XZ
n

−
=  

 

and X  > c corresponds to Z  > c n .  At (for example) the level α = 0.05, the upper 
tail of the N(0, 1) distribution begins at z = 1.645.  So c n  = 1.645, or c = 1.645 / n . 
 
 

Solution continued on next page 



A sequential test is one that is carried out on data that are collected and studied one at 
a time.  Each time a new observation is obtained, it is added to the existing analysis 
and a decision is made as to whether to accept the null hypothesis, accept the 
alternative hypothesis, or continue sampling. 
 
In the example above, the total Σxi (or equivalently the mean) would be examined at 
each step.  If it exceeded a particular value which depends on n (the number of 
observations collected so far), the hypothesis representing the larger value of θ would 
be accepted;  if it was less than another critical value, the hypothesis representing the 
smaller value of θ would be accepted. 
 
These critical values depend on the levels chosen for α and β, the error probabilities. 
 
The analysis is often carried out graphically.  Sequential tests can lead to smaller 
samples on average than corresponding Neyman-Pearson tests. 
 
 
Part (b)
 
The first statistician is prepared to assume that the differences di for each person 
between "before" and "after" measurements are observations from a Normal 
distribution.  The two sets ("before" and "after") need not themselves individually 
follow Normal distributions.  The test is based on the mean of the differences and its 
standard deviation. 
 
The second statistician is making no distributional assumptions about either of the 
individual sets of data or about the differences between "before" and "after".  
Differences di are again used.  They are ranked in order of absolute value, but also 
given the appropriate sign (+ or –).  A suitable test statistic is the total of the ranks of 
the positive-signed differences (or of the negative-signed differences).  Special tables 
are needed when there are fewer than about 20 pairs of data items, but there is an 
adequate Normal approximation to the distribution of the total for larger samples.  
When the paired t test is valid, it is more powerful;  but the Wilcoxon test is more 
robust to non-Normality. 
 
The value of pairing is that it removes personal systematic differences, such as some 
people naturally having longer reaction times (both "before" and "after") than others.  
For both test procedures, a one-sided alternative hypothesis is often appropriate, it 
commonly being the case that either a decrease or an increase, but not a mixture of 
the two, is being looked for. 
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(i) Let x1, x2, …, xn be the first sample.  We have 0ix =∑  and 
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(ii) Denote the mean and variance for the augmented sample by X  and S 2.  Then 
the usual t statistic is 
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Hence, as , ;  and as , .  That is, as y →+∞ 1t →+ y →−∞ 1t →− y →∞ , 1t → . 
 
 
(iii) Taking the original sample mean as 0 and sample standard deviation as 1 does 
not affect the generality of the result, because this can always be achieved by a 
suitable linear transformation. 
 
Hence, if there is a very extreme outlier, 1t ≈  for any 0μ  and any n. 
 
So the null hypothesis will not be rejected at any of the usual significance levels;  the 
power of the test is very low. 
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