EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

(formerly the Examinations of the Institute of Statisticians)

GRADUATE DIPLOMA, 2004

Statistical Theory and Methods II

Time Allowed: Three Hours

Candidates should answer FIVE questions.
All questions carry equal marks.
The number of marks allotted for each part-question is shown in brackets.

Graph paper and Official tables are provided.

Candidates may use silent, cordless, non-programmable electronic calculators.
Where a calculator is used the method of calculation should be stated in full.

The notation \log denotes logarithm to base \boldsymbol{e}.
Logarithms to any other base are explicitly identified, e.g. $\log _{10}$.

$$
\text { Note also that }\binom{n}{r} \text { is the same as }{ }^{n} C_{r} \text {. }
$$

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with probability density function (pdf)

$$
f(x)=\frac{x^{\theta-1}}{k_{\theta} \lambda^{\theta}} \exp (-x / \lambda), \quad x>0 .
$$

Here $\theta>0$ and $\lambda>0$ are parameters and k_{θ} is a normalising constant that depends only on θ. You are given that a random variable with this pdf has mean $\theta \lambda$ and variance $\theta \lambda^{2}$.
(i) Suppose that θ is known. Obtain $\tilde{\lambda}_{\theta}$, the method of moments estimator for λ, and show that it is unbiased for λ.
(ii) Show that the variance of $\tilde{\lambda}_{\theta}$ attains the Cramér-Rao lower bound.
(iii) Suppose instead that λ is known and θ is unknown. Show that $\sum_{i=1}^{n} \log X_{i}$ is sufficient for θ.
(iv) Find the method of moments estimator for θ when λ is known, and deduce from (iii) that the estimator is not fully efficient.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with probability density function (pdf)

$$
f(x)=\frac{c x^{c-1}}{\lambda^{c}} \exp \left\{-\left(\frac{x}{\lambda}\right)^{c}\right\}, \quad x>0
$$

where c is a known positive constant and $\lambda>0$ is a parameter.
(i) Let X be a random variable with the above pdf. By considering $\frac{\partial \log f}{\partial \lambda}$, or otherwise, show that $E\left(X^{c}\right)=\lambda^{c}$.
(ii) Obtain $\hat{\lambda}$, the maximum likelihood estimator of λ.
(iii) Find the Fisher information for λ and hence obtain the large sample variance of $\hat{\lambda}$.
(iv) Hence calculate an approximate 95% confidence interval for λ when $\hat{\lambda}=4$, $c=2$ and $n=100$.
3. A random sample $X_{1}, X_{2}, \ldots, X_{n}$ is available from a Poisson distribution with mean θ. It is of interest to estimate λ, defined by $\lambda=e^{-\theta}$.
(i) Find the maximum likelihood estimator (MLE), $\hat{\theta}$, of θ. Hence deduce the MLE, $\hat{\lambda}$, of λ.
(ii) Find the variance of $\hat{\theta}$, and deduce the approximate variance of $\hat{\lambda}$ using the delta method.
(iii) An alternative estimator of λ is $\tilde{\lambda}$, defined as the observed proportion of zero observations. Find the bias of $\tilde{\lambda}$ and show that

$$
\begin{equation*}
\operatorname{Var}(\tilde{\lambda})=\frac{e^{-\theta}\left(1-e^{-\theta}\right)}{n} \tag{5}
\end{equation*}
$$

(iv) Draw a rough sketch of the efficiency of $\tilde{\lambda}$ relative to $\hat{\lambda}$, and discuss its properties.
4. Observations X_{1}, X_{2}, \ldots are available from a $\mathrm{N}(\mu, 1)$ population. The null hypothesis $H_{0}: \mu=0$ is to be tested against the alternative hypothesis $H_{1}: \mu=1$.
(i) For a fixed sample size n, let \bar{X} denote the mean of $X_{1}, X_{2}, \ldots, X_{n}$. Show that the Neyman-Pearson approach leads to rejection of H_{0} in favour of H_{1} when $\bar{X}>k$ for some suitable k.
(ii) Find the smallest value of n so that the Type I and Type II error probabilities are equal and are no more than 0.05 .
(iii) Construct the sequential probability ratio test (SPRT) with approximately the same error probabilities. Calculate approximate expected sample sizes of the SPRT under H_{0} and H_{1}.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a continuous distribution with distribution function F. The null hypothesis is that $F(x)=F_{0}(x)$ for all x, where F_{0} is a specified distribution function.
(i) Describe the Kolmogorov-Smirnov test.
(ii) Discuss briefly the strengths and weaknesses of this test.
(iii) The lifetimes in hours of a random sample of ten widgets from a large batch are as follows:

$$
80,57,280,15,30,251,3,45,170,145 .
$$

Perform a Kolmogorov-Smirnov test of the null hypothesis that the lifetimes have an exponential distribution with mean 100 hours. Report your conclusion.
6. A random sample $X_{1}, X_{2}, \ldots, X_{n}$ is available from a distribution indexed by a real parameter θ. Let T be an estimator of θ.
(i) Define the risk of T in terms of a specified loss function. What does it mean to say that T is an inadmissible estimator of θ ?
(ii) Suppose now that this random sample comes from an exponential distribution with mean θ. Consider the maximum likelihood estimator (MLE) of θ, $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and the Pitman estimator of $\theta, \tilde{\theta}=\frac{1}{n+1} \sum_{i=1}^{n} X_{i}$. Calculate the mean square errors of $\hat{\theta}$ and $\tilde{\theta}$.
(iii) Hence deduce that $\hat{\theta}$ is inadmissible with a squared error loss function.
(iv) Show that $\tilde{\theta}$ is a consistent estimator of θ.
7. Observations $x_{1}, x_{2}, \ldots, x_{n}$ are available from a geometric distribution with probability mass function

$$
p(x \mid \theta)=\theta(1-\theta)^{x}, \quad x=0,1,2, \ldots,
$$

where θ has a prior beta distribution with probability density function

$$
p(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

for $0<\theta<1$ with parameters $a>0$ and $b>0$. [You are given that such a beta distribution with parameters a and b, as above, has mean $\frac{a}{a+b}$ and variance $\left.\frac{a b}{(a+b+1)(a+b)^{2}}.\right]$
(i) Show that the beta distribution is a conjugate prior.
(ii) The prior belief about θ is that it has mean $1 / 2$ and standard deviation $1 / 10$. Show that for the conjugate prior this implies that $a=b=12$.
(iii) Suppose that $n=88$ and $\sum x_{i}=48$. Calculate the posterior mean and posterior standard deviation of θ.
(iv) Using an appropriate Normal approximation, calculate a Bayesian 90% posterior interval for θ.
8. A large random sample is available from a distribution indexed by a single real parameter, θ.
(i) Discuss the different ways in which the log-likelihood (viewed as a function of θ) may be used (a) to test $H_{0}: \theta=\theta_{0}$, for some specified θ_{0}, against $H_{1}: \theta \neq \theta_{0}$ and (b) to obtain a confidence interval for θ. You may assume that any necessary regularity conditions are satisfied.
(ii) Explain how the confidence interval in (b) above may be regarded as an approximation to a Bayesian interval for θ in certain circumstances.

