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(i) Let iX  denote the number of breakages in the ith chromosome.  Then the likelihood 
function is   
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(ii) 
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.   An initial estimate 0λ  could be found by plotting l(λ) 

[or L(λ)] against λ.  Alternatively, it is often satisfactory to use the estimator for a non-

truncated Poisson, which here would be 0
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(iii) Using the given value ˆ 3.6λ = , ( ) ( )3.6
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Similarly, P(X = 3) = 0.2184, P(X = 4) = 0.1966, P(X = 5) = 0.1415. Hence P(X ≥ 6) = 
0.1603.  [Note.  These probabilities are accurate to 4 d.p., but there is slight rounding in the expected frequencies 
below.] 
 

x 1 2 3 4 5 6≥  TOTAL 
observed 11 6 4 5 0 7 33 
expected 3.34 6.01 7.21 6.49 4.67 5.28 33.00 
 
Comparing the observed and expected frequencies, the χ2 test will have 4 d.f. since λ had to 
be estimated.  The test statistic is 
 

( ) ( ) ( ) ( ) ( )2 2 2 2 22
2 11 3.34 6 6.01 4 7.21 5 6.49 7 5.284.67

3.34 6.01 7.21 6.49 4.67 5.28
X

− − − − −
= + + + + +   =  24.57. 

 

This is very highly significant as an observation from 2
4χ , i.e. there is very strong evidence 

against the null hypothesis of a truncated Poisson distribution. 
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(a) Suppose that the data ( )1 2 ... T
nx x x x=

�
 have joint probability density (or 

mass) function ( ),f x θ
�

, θ  being an unknown parameter.  The loss ( ) ,L xδ θ  �
 of a 

decision rule is the loss associated with choosing that decision. 
 

The risk of δ  is ( ) ( ){ }| ,XR E L Xδ θθ δ θ =  � �
;  and the Bayes risk is 

( ) ( ) ( ) ( )r E R R dπ π δ δδ θ θ π θ θ= =   ∫ , in which ( )π θ  is the prior distribution of θ . 
 
A prior distribution which leads to posterior distributions in the same family is called 
conjugate. 
 

(i) The prior distribution of θ  is ( ) ( ) 11 1 βαπ θ θ θ −−∝ − ,       0 1θ< < . 
|X θ  is binomial, X being the number of seeds germinating out of n.  Hence the 

posterior distribution of θ  is 
 

 ( ) ( ) ( )11| 1 . 1 n xxx βαπ θ θ θ θ θ− −−∝ − −   =  ( ) 11 1 n xx βαθ θ + − −+ − − ,     0 1θ< < . 
 
This is beta with parameters  α + x  and  β + n − x.  Therefore  
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(ii) With a quadratic loss function, the Bayes estimate of θ is equal to the mean of 
θ under the posterior distribution. 
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(iii) If d = d0, the posterior expected loss is 
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Since the loss under d = d1 is 1, choose d1 if 2 | 1cE xθ  >  , 

i.e. if   1 1.
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A uniform prior has α = 1, β = 1.  Hence for n = 15, x = 10 and c = 25, choose d1 since 
11 1 18.
17 25 12

>      (0.647 > 0.06). 
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(i) Suppose that the data consist of pairs (xi, yi) (for i = 1 to n) of observations 
taken on n units from a population.  Let the ranks of the {xi} be {vi} and those of the 
{yi} be {wi}, for i = 1 to n. 
 
Define di = vi − wi  (for i = 1 to n). 
 
Spearman's rank correlation coefficient rs is the product-moment correlation 
coefficient of the ranks (vi, wi) for i = 1 to n.  It may be calculated as 
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(ii)  
 
Observation 1 2 3 4 5 6 7 
Rank in A 1 2 3 4 5 6 7 
Rank in B 1 2 3 4 5 7 6 
        2 2id =∑ . 
 
There are 7! possible rankings altogether.  We need to find the number of ways in 
which a value of 2 2id ≤∑  can arise.  Keeping the A ranking fixed, the B ranking 
could be 
 
1 2 3 4 5 6 7  1 3 2 4 5 6 7  1 2 3 5 4 6 7  1 2 3 4 5 7 6 
2 1 3 4 5 6 7  1 2 4 3 5 6 7  1 2 3 4 6 5 7 
 
This is 7 ways out of 7! for the B ranking, i.e. the probability (p-value) is 
7 1
7! 6!

= = 1
720

. 
 
 
(iii) 
 

Environment 1 2 3 4 5 6 7 8 
Rank X 2 1 5 7 3 6 4 8 
Rank Y 4 5 1 7 3 6 2 8 

di −2 −4 4 0 0 0 2 0 
2 40id =∑

6 40 30 33 111 1 0.5238
8 63 63 63 21sr
×= − = − = = =
×

. 

 
The 5% critical value of rs for n = 8 is 0.738.  Hence there is no evidence of 
association (at the 5% level). 
 
[Note.  The 5% critical value is wrongly quoted in Table XVI in some copies of the Society's Abridged Tables for 
Examination Candidates as 0.714.  Candidates were, of course, not penalised in the examination.] 
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The power of a test is the probability of rejecting the null hypothesis expressed as a 
function of the parameter under investigation.  If both the significance level of the test 
and the power required at a particular value of the parameter are specified, then a 
lower bound for the necessary sample size can be determined. 
 

(i) The likelihood function is ( ) ( ) 11 1
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By the Neyman-Pearson lemma, the most powerful test has critical region 
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(iii) Using the given result,  2
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Given a random sample ( )1 2 ...  T

nx x x x=
�

 from a distribution whose pdf contains a 

parameter θ , the likelihood function for this sample is ( ) ( ),L f xθ θ≡
�

 considered as 

a function of θ .  The maximum likelihood estimator, θ̂ , of θ  is the value of θ  that 
maximises ( )L θ . 
 

For large samples, under standard regularity conditions, 
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I θ
 is the Cramér-Rao lower bound for the variance of an unbiased estimator.] 

 
θ̂  is consistent, asymptotically unbiased. 
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continued on next page 



 

 

Question 5 continued 
 
 
 
(iii) When n = 1, 2ˆ X Xθ = − . 
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The opening part of this question is standard bookwork regarding the relationship 
between statistical tests and confidence sets. 
 
 

(i) Given ( ) ( ) ( ) ( ) 2/ /
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Z is a function of θ  whose distribution does not depend on θ .  Hence it is a pivotal 
quantity. 
 
 
(iii) Choose any interval [ ]1 2,z z , where 1 0z ≥ , such that  
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1

1
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Classical (or "frequentist").  A null hypothesis will specify a model for data, based on 
a distribution in which there is an unknown parameter;  an alternative hypothesis uses 
the same distribution with different values for the parameter.  For example, a null 
hypothesis can use the model ( )1N ,1µ  with the alternative ( )2N ,1µ .  Given the 
model, a test can be set up with a given probability of rejecting the null hypothesis, 
for example if a sample mean is "unlikely" to take the value it did in the data, where 
"unlikely" might mean a probability of less than 0.05.  In this case the alternative 
hypothesis is automatically accepted (even when the null hypothesis is in fact true).  
The null hypothesis is never "proved", and even with large samples of data there is a 
measurable chance of making Types I and II errors.  It is evidence, not proof, for or 
against a null hypothesis that is obtained in this method, and misinterpretation is easy 
in unskilled hands.  This remains the most commonly used method of hypothesis 
testing. 
 
Bayesian.  It is unusual to test a simple null hypothesis.  But after calculating a 
confidence interval, a testing process may be carried out by rejecting a null hypothesis 
that 0θ θ=  if a ( )100 1 %α−  confidence interval for θ  does not contain 0θ .  
Probabilities can be assigned to opposing hypotheses, and costs can be introduced into 
this process, much more easily than in others. 
 
Likelihood.  If 0θ  does not have a likelihood within a certain distance of the 

maximum likelihood (i.e. the likelihood for the maximum likelihood estimator θ̂ ) 
found from the sample data, the null hypothesis that 0θ θ=  is rejected.  This method 
depends on using likelihood as a measure of how plausible various values of θ are.  
The distance from the maximum is sometimes chosen rather arbitrarily. 
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(i) The pdf of X and Y is ( ) 1,
x y
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(ii) The likelihood function based on n observations of iw  is  
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              ( ) ( )0.714 1.667i iw n w−∑ ∑= . 
 
The SPR test with the given values of α  and β  is to 

continue sampling while nA Bλ< <  
    accept 0H  if n Bλ ≥  
    accept 1H  if n Aλ ≤  

 

where 0.05 1
1 0.95 19

A α
β

= = =
−

 and 1 0.95 19
0.05

B α
β
−= = = . 

Continue sampling while ( ) ( ) ( )ln ln 0.714 ln 1.667 lni iA w n w B< + − <∑ ∑  

i.e. 0.603 3.472 0.603 3.472in w n− < < +∑ . 
 
(iii) Plot iw∑  against n and stop sampling as soon as the sample path crosses one 
of the boundary lines of the "continue sampling" region. 
 
 
 
 
 
 
 
 
 
 
 

continued on next page 
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Question 8 continued 
 
 
 

(iv) Let ( )
( ) ( ) ( ) ( )0

1

ln ln 0.714 1 ln 1.667i
i i i

i

p w
z w w

p w
 
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 for i = 1, ..., n. 

Then [ ] ( ) ( )1 0.7 ln 0.714 0.3ln 1.667 0.0825iE Z = + = − , and so when 1H  is true the 
expected sample size is approximately equal to 
 

( )
[ ]1

1 ln ln 0.95ln19 0.05ln19
0.0825i

A B
E Z

β β− + − += =
−

  32.1 . 
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