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Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 1 
 
 
(i) If Yt = value at time t, and tε  is a ( )2N 0, εσ  random variable, and 0 1, , ..., pφ φ φ  are 
coefficients (constants), 
 

 0 1 1 2 2 ...t t t p t p tY Y Y Yφ φ φ φ ε− − −= + + + + +  
 

is the general equation for AR(p). 
 
Likewise, with 1 2, , , ..., qµ θ θ θ  a set of coefficients and the { }tε  uncorrelated, the general 
MA(q) equation is 
 1 1 ...t t t q t qY µ ε θ ε θ ε− −= + + + +  . 

[Alternative expressions of these are possible.] 
 
 
(ii) (a) 195 0.7t t tY ε ε −= + −  . 
 

[ ]tE Y =  95 since [ ] 0tE ε =  for all t. 

( ) ( ) ( )2
1Var Var 0.7 1 0.49t t tY εε ε σ−= − = +           (since [ ]1 0t tE ε ε − = ) 

     21.49 εσ=  . 
 

20.7 , 1 ,
0 , elsewhere .k

kεσγ
− =

= 


 

 

0.7 0.47
1.49kρ −∴ = = −  for 1k = , and 0 elsewhere. 

 
(b) 268 0.5t t tY Y ε−= − +  . 

[ ] 68
1 0.5tE Y = =

+
 45.3 . 

( )
( )

2
2

2Var 1.33
1 0.5

tY ε
ε

σ σ= =
−

 . 

 

20.5k kρ ρ −= −  ;     1 0ρ = , since no term in 1tY −  ; 

2 0.5ρ = − , 4 0.25ρ = + , 6 0.125, ...ρ = −   ; 3 5 ... 0ρ ρ= = =  . 
 
 
(iii) 190 0.8t t tY Y ε−= − +  . 
 

Consider ( )1 2 1t t t t t tY Y Yµ α ε µ α µ α ε ε− − −= + + = + + + +  
        ( ) 2

2 11 t t tYµ α α αε ε− −= + + + +  
        ( ) ( )2

3 2 11 t t t tYµ α α µ α ε αε ε− − −= + + + + + +  

        ( )2 3 2
3 2 11 t t t tYµ α α α α ε αε ε− − −= + + + + + +  

         = … 

        2
1 2 ...

1 t t t
µ ε αε α ε

α − −→ + + + +
−

 
 

Here 0.8, 90α µ= − = , so 1 2 350 0.8 0.64 0.512 ...t t t t tY ε ε ε ε− − −→ + − + − +  . 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 2 
 
 
(i) The two classes may have different characteristics and, because a whole class 
either has feedback or does not, any difference between classes will be confounded 
with treatment (feedback) effect. 
 
 
(ii) (a) The pre-test scores (x-values in diagram) are similar in the two groups 
but the post-test scores are different – see (c).  Hence a one-way analysis of variance 
on post-test scores will estimate the treatment effects.  The variances in the two 
groups appear to be similar, as is required for a valid analysis of variance. 
 

(b) ij i ijy µ τ ε= + +  
where 
 

ijy  = post-test score for jth person in group i (i = 1,2), 
µ  = overall mean, 

iτ  is the effect due to treatment i (i = 1, 2), 

{ }ijε  are independent identically distributed ( )2N 0,σ  random variables 
representing the error (residual). 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

t 

pre-

Difference in post-score means, 
measures treatment effect 

Common pre
(approximate

post-
score 
yij 
control
treatmen
score xij 

-score mean 
ly) 



 

 

 
(iii) (a) ( )ij i ij ijy x xµ τ γ ε= + + − +  

where (in addition to the notation in (ii)(b)), ijx  is the pre-score, x  is its mean, 
and γ  is a regression coefficient. 

 
(b) Here, as an example, is a case showing some pre-scores for the control 
group higher than for the treatment group, and where analysis of variance will 
under-estimate the treatment effect. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 (c) If ij ij ijd y x= −  were used instead of ijy , then we

( )ij ij ij i ij ijd y x x xµ τ γ ε ≡ − = + + − +   

i.e. ( )( )1ij i ij ijy x x xµ τ γ γ ε= + + + − + +  

           ( ) ( ) ( )1i ij ijx x xµ γ τ γ ε= + + + + − +  . 
 

So the model is exactly the same, with two different c
and 1 γ+  for γ   –  i.e. equivalent to the model in (ii)(a)

l 

t 

pre-sco

Estimate of treatment effect 
from analysis of variance 

Estimate from 
analysis of covariance 

post-
score 
yij 
contro
treatmen
 would have 

onstants, xµ γ+  for µ  
. 

re xij 



 

 

 
(iv) (a) The regression slopes must be the same in both groups. 
 
 (b) ( )ij i i ij ijy x xµ τ β ε= + + − + ,     i = 1, 2. 
 

[Note βi for the two separate regression coefficients, not simply γ for 
both of them.] 

 
(c) If 1 2β β≠ , the lines are not parallel, and this allows for a possibly 

different relationship between y and x in the two groups. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (d) Treatment effect depends on pre-score x.  The 

to estimate the effects at ,  T Cx x  and compare these. 

l 

t 

pre-sco

post-
score 
yij 
contro
treatmen
best estimate is usually 

re xij 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 3 
 
 
Case Study 1 
 
(i) There are two large standardised residuals.  Although 2 out of 56 is not unreasonable, 
the largest residuals are mostly positive, the overall pattern being rather skew.  There may be 
some lack of fit.  For latitude there is a basic fan shape, suggesting that the model fits but 
variance is not constant as latitude changes.  For longitude, the larger values are not 
satisfactorily modelled.  It may not be a very suitable variable in itself, except perhaps as a 
proxy for distance from sea in the case of the USA. 
 
(ii) Normal probability plots may indicate other problems with residuals.  Plot residuals 
against distance inland, height above sea level, and other geographical variables.  
Temperatures may be plotted against other variables (before beginning regression), although 
residual plots often give clearer pictures. 
 
(iii) Relationship with latitude makes geographical sense, although other relationships 
may turn out to be more important on further analysis.  More than one variable can be 
included.  A weighted regression or a (logarithmic) transformation could remove the fan-out 
problem.  "Odd" observations can be studied by identifying the cities concerned and looking 
for any special reasons or demographic features which may affect the relationship. 
 
 
Case Study 2 
 
(i) There is one outlier, but otherwise the plots are satisfactory. 
 
(ii) Make a Normal probability plot, though there is only a small sample of data.  An 
initial plot of strength against specific gravity would clarify where the outlier was.  Measures 
of influence may be worth examining. 
 
(iii) Check the data again for correctness.  Recompute the model without the outlier – 
unlikely to be 'influence' but may be a 'leverage' point.  So few data that is worth obtaining 
more if possible.  Consider any other possible predictor variables. 
 
 
Case Study 3 
 
(i) None of the plots looks random; there is (not surprisingly) evidence of 
autocorrelation in the residuals. 
 
(ii) A Durbin-Watson test would be the 'formal' way of assessing the problem.  A runs 
test could also be useful. 
 
(iii) Autocorrelation must be allowed for in modelling.  Then the pattern of trend etc can 
be studied more clearly. 
 
 
 
 
 
[NOTE.  The marking scheme reflected how much could usefully be said about each Study.] 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 4 
 
 
(i) (a) If iπ  = P(positive response for level i of a factor) then the Odds Ratio 
for two levels j and k is 
 

1

1

j

j

k

k

π
π

π
π

−

−

 ,        or    
( )
( )
1
1

j k

k j

π π
π π

−
−

 . 

 
(b) The model will contain a term with parameter γ  for the factor, present 
as 2γ  since 1γ  is set equal to 0 to avoid over-parametrization.  The fitted 
model gives 2γ̂  and its estimated variance. 

 

2γ̂  is asymptotically Normal since it is a maximum likelihood estimator.  A 
95% confidence interval for the odds ratio is approximately 

( ){ }2 2ˆ ˆexp 1.96SEγ γ± . 
 
 
(ii) (a) There seems to be no difference between boys and girls, and no 

dependence of proportion successful on initial grading.  Overall about 70% 
pass, and the apparently extreme observations are all based on very small 
numbers, and therefore unreliable. 

 
 
 (b) 
 

Predictor Variables in Model Scaled Deviance DF 
− 12.348 17 

Sex 11.997 16 
Initial grading 12.346 16 

Initial grading + Sex 11.993 15 
 

Forward selection first step gives constant plus term for sex;  extra SS for sex 
= 12.348 – 11.997 = 0.351, not significant as 2

1χ ;  extra SS for initial grading = 
0.002, not significant. 

 
No term other than constant required (clearly no point in adding initial grading 
after constant + sex). 

 

The ratio scaled deviance 12.348 0.726
d.f. 17

= =  which is <1, so fit is satisfactory. 

 
Sample sizes are quite small, so there may be some doubt whether the 
assumptions necessary for modelling do hold, since testing them is not 
possible to do precisely. 



 

 

 
(c) The graph would be presented.  The report should avoid technical 
jargon.  It would make the point that the percentage passing is very similar for 
the two sexes, and likewise for the different initial gradings.  It would state 
that the analysis showed that 68.6% of participants passed and that, 
statistically, there was no difference between the sexes, nor did the initial 
grading affect the results. 

 
 

(d) One could point out that the manager is not an expert in statistics and 
would be reassured to know that a proper analysis has been done.  In fact if the 
manager had worked out the percentages and found 70.1% for boys and 66.3% 
for girls, he/she would not have known whether this was important, without 
the formal analysis.  There was of course statistical variability in the pattern on 
the graph, and the top and bottom ends of the picture were affected by having 
very few data.  The analysis takes care of this point.  The conclusion may be 
"obvious" to a statistician, although without a good appreciation of the basic 
variability it can be hard to say where the division comes between "obviously 
different" and "obviously the same". 

 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 5 
 
 
(i) There is no information about the nature of the variables, their dimensions or 
variability.  Good modelling uses the physical knowledge of what the measurements 
represent.  Also there are too many predictor variables for too few data. 
 
 
(ii) No x-variable is very highly correlated with y;  the highest correlations are x13 
and x12 at 0.599 and 0.572 respectively. 
 
However, the predictor variables are correlated among themselves.  In fact they seem 
to fall into clusters of strongly positively correlated values: 
 

1 2 3,  ,  and x x x ;          8 9 10 11,  ,   and x x x x ;          4 7,  x x ;          5 6,  x x ;          12 13,  x x ; 

11x  is also correlated with 12x ;          15x  is also correlated with 14x  and 16x ; 
and so is 5x  with 14x . 
 
 
(iii) Because of these strong correlations among predictors, principal components 
might summarise most of the variation using substantially fewer than 16 'variables' 
(components). 
 
 
(iv) PC1 is an average of variables 1 – 4, 7, 12 – 16. 
 PC2 is a contrast of 5 and 6 with 8 – 11. 

PC3 is a contrast of 1 – 3 with 15 – 16 (or, perhaps 1, 2, 3, 4, 7 with 12, 13, 
15, 16). 
PC4 is an average of 4 and 7. 
PC1, PC2 explain 3

4  of the total variation, PC3 and PC4 a further 17%. 
 
We would certainly like to know what the variables are, so as to see whether it makes 
better sense to include or omit some of the doubtful ones  –  and also to check whether 
those that might be expected to work together actually do so. 
 
 
(v) Backward elimination will not have been possible because there were too few 
observations.  Forward selection began with x13 because it has the highest correlation 
with y.  The two variables chosen have given a poor model, although the regression is 
significant so there is evidence that some relationship has been modelled. 
 
The PCs seem to be of limited use, because including those which together explain 
97.4% of the variation has only given R2 = 35.4% (so no subset of the first 5 can even 
do as well as this).  This is a very poor model. 
 



 

 

(vi) (a) Apparently there is a perfect fit  –  most unusual for real data, even in 
highly controlled experimental conditions.  This result is vastly better than 
anything in (v). 

 
 

(b) Forward selection would never consider this combination, because it 
has to begin with x13 (see above) and this is never removed later in the process.  
Presumably while x13 is present, x4 – x7 individually are not significant.  Also 
there is no linear combination of PCs 1 – 5 that gives the linear combination of 
4 – 7 and 16 found in this model. 

 
 

(c) Because of the excess of variables over observations, there is no basis 
for "backward elimination", with no estimate of residual variation.  In 
principle a "best subsets" program would find the combination (4 – 7, 16), 
with an upper limit of 11 on the number of variables that could be included.  
This is a serious combinatorial problem.  There may be other "perfect fits".  
But in view of the substantial correlations among groups of the predictor 
variables, including only one from each group might be a useful simplification 
to start with.  This would be greatly helped by a knowledge of what the 
variables actually are. 

 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 6 
 
 
(i) Some variables are more accurately measured than others, and some are less objective 
(more subjective) in nature. 
 
Some will not be linear predictors, e.g. TIME.  Some may be unstable, e.g. CHANGE.  Some 
are correlated:  there is a strong correlation of TIME with ACCTS, only one of which should 
be included in a model for SALES.  Also CHANGE and RATING go together.  AREA is 
highly subjective and so best omitted. 
 
Most of the variables are sufficiently correlated with SALES to be worth including (except 
possibly WORK). 

 
(ii) Backward elimination begins from a model containing all predictors, though this may 
be difficult to obtain if multicollinearity occurs. 
 

Forward selection begins with the variable most highly correlated with the response (y) and 
adds others to it;  but does not examine other combinations of variables that do not include the 
original one. 
 

Best subsets examines all possible combinations of predictors but needs large-scale 
computing facilities, and there is the theoretical problem of the actual probabilities of Types I 
and II Error. 
 

It is much better to use practical knowledge of the predictors and construct a model that 
makes physical sense, not relying only on significance tests for inclusion.  A 'parsimonious' 
model is a good aim since it is easier to explain. 
 

Fit may be checked by R2, adjusted R2, Cp etc;  plots of residuals may be examined for misfit, 
presence of systematic variation, violation of necessary assumptions (e.g. constant variance). 

 
(iii) (a) ( ) 1T T−

=H X X X X .  We have 

( ) 1 ˆT T−
= = =HY X X X X Xβ Y  , 

thus H converts Y  to Ŷ  and so H is called the hat matrix. 
 

Further results are 
 

( )ˆˆ = − = − = −ε Y Y Y HY I H Y  , 

[ ]ˆ 0E =ε      and     ( ) ( )2ˆVar σ= −ε I H ,   i.e. ( ) ( )2ˆVar 1i iihε σ= −  . 
 

Residuals are correlated (unlike the unobservable errors);  if errors are Normally 
distributed, so are residuals. 

 
If the model contains a constant (intercept) term, residuals sum to 0. 

 
We also have 

1 1

1
n n

ij ij
i j

h h
= =

= =∑ ∑ ,   and   
1

ˆi ii i ij j
j

y h y h y
≠

= +∑  ; 

so as 1iih → , ˆi iy y→ .  hii is the leverage of the ith observation, indicating how 
heavily yi contributes to ˆiy .  High leverage of points that are not outliers is not easy 
to explain.  Points of influence are important, because a model ought not to depend 
too heavily on a few observations.  A useful rule is that a point is "influential" if 



 

 

hii  >  2(p + 1)/n, where n = number of observations and p = number of predictor 
variables.  In model construction, it is often sensible after fitting an initial model to 
remove points of influence and consider the effects on the model. 

 
 

(b) All of these measures look at the influence of individual observations. 
 

(1) A Studentised residual SRi is defined as ( )ˆ ˆ/ 1i iihε σ − , and in a 

Studentised deleted residual σ̂  is replaced by ( )ˆ iσ  from the variance estimate 

when observation i is not used.  These can be plotted against fitted values ˆiy , 
and in a time-series or process-control situation they may also be plotted 
against observation number (when i is listed in time order). 

 
Points with high residuals are investigated for influence and lack of fit. 

 

(2) Cook's distance ( )
( )

2

1
ii i

i
ii

h SR
D

p h
=

−
, where p is rank (X), or 

( )( ) ( )( )
2

ˆ ˆ ˆ ˆ

ˆ

T

pσ

− −i iY Y Y Y
, where ( )

ˆ
iY  is the vector of fitted values when 

observation i has been omitted. 
 

Di is a measure of the influence of observation i.  It may be plotted against i 
or against the fitted value.  "High" values, usually >0.8 but it depends on the 
dataset, indicate influential observations. 

 

(3) ( )

( )

ˆ ˆ

ˆ
i i

i
iii

y y
DFFITS

hσ

−
= , or 

( )

1/ 22

2

ˆ
ˆ
i

i

D pσ
σ

 
 
 

, is similar to Cook's distance, 

with ( )
2ˆ iσ  instead of 2σ̂ .  Plot it against fitted values, and again look for 

relatively large values. 
 

(4) DFBETAS.  This measures how an observation influences parameter 

values (estimates):  ( )
( )( )

( )( )
ˆ ˆ

ˆ
j j i

j i
j i

DFBETA
SE

β β

β

−
= .  High values are of interest 

(often taken as 2 / n> ).  Plot, for omission of each i, for each parameter. 
 

(5) COVRATIO.  This measure the impact of the ith observation on the 
variance-covariance matrix of estimated coefficients, i.e. the precision of 
parameter estimates: 

 

( ) ( ) ( )( )
( )

1
2

12

ˆdet

ˆdet

T
i

i
T

COVRATIO
σ

σ

−

−

 
  =
 
  

i iX X

X X
. 

 

Value >1 indicates increase in precision, and <1 decrease in precision, i.e. 
undue influence on variation. 

 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 7 
 
 
(i) Linear discriminant analysis can be used to produce a classification rule where 
the groups are known a priori , and data are described by several variables.  Linear 
combinations of these variables xi can show up relations not obvious from separate, 
univariate, analyses.  Classifications so found can be applied to the new sites. 
 
 
(ii) Multivariate Normal variance-covariance matrices are required to be equal for 
each group (but locations will be different).  This is not easy to check;  although 
formal tests exist, they are sensitive to non-Normality.  Also, relatively small sample 
sizes do not help.  Univariate Normality for each measurement can be checked in the 
usual ways (e.g. histograms, stem-and-leaf plots, Normal probability plots);  
univariate Normality is a necessary but not sufficient condition for multivariate 
Normality. 
 
 
(iii) Variance-covariance matrices are apparently different, with changes in sign as 
well as size of individual entries.  Normality cannot be checked on the information 
given. 
 
Means of x1 and x4 (and possibly x5) appear different for the two groups.  Also x4 has 
the smallest variance of the {xi}. 
 
 
(iv) Method 1.  After constructing and applying the discriminant function, 14/17 
(1) and 12/15 (2) are found to have been correctly classified.  This is good, but is 
likely to be an overestimate of the future success rate (since the same data have been 
used to construct the function and to "check" it). 
 
Cross-validation may be carried out by, for example, a jack-knife method:  calculate 
the function omitting one observation, and use the function to predict class 
membership of that item;  repeat this for each item in turn and observe the number of 
correct predictions.  [In a large data-set, the discriminant function would be calculated 
on some of the data and then used to check the success rate of the remainder.  Here 
we do not have enough data for that.]  This gave 12/17 (1) and 9/15 (2) correct. 
 
 
Method 2.  Note that x4 was identified in (iii) as a useful variate.  This method 
correctly classifies 12/17 (1) and 12/15 (2), and the numbers on cross-validation are 
the same.  This seems the better method. 
 
With these sample sizes, using 5 variables (Method 1) may be over-fitting.  The 
univariate (as it has turned out) Method (2) is more successful. 
 



 

 

Graduate Diploma, Applied Statistics, Paper I, 2002.  Question 8 
 
 
(i) (a) For all factors fixed, and the linear model 
 

 ij i ijy µ τ ε= + +  
 

each expected mean square will, on a null hypothesis that the corresponding 
0iτ = , estimate ( )2 var  a term in ij iσ ε τ ≡ +  ;  these are listed in the 

following table, and the set { }iτ  contains all the necessary main effect and 

interaction terms.  
2

2

1
a

a a
τ

θ =
−

∑  where a – 1 is the number of degrees of 

freedom for A, ( )( )
2

2

1 1
ab

ab a b
τ

θ =
− −
∑ , and so on.  There are 4 replicates. 

 
 

SOURCE E(MS) SS DF(f) MS ,36fF  

A 2 224 aσ θ+    60.75   1 60.75 12.79    very highly sig 
B 2 216 bσ θ+      6.00   2   3.00 < 1 
C 2 224 cσ θ+    18.75   1 18.75 3.95   not sig. 

AB 2 28 abσ θ+      0.00   2   0.00 < 1 
AC 2 212 acσ θ+      0.75   1   0.75 < 1 
BC 2 28 bcσ θ+    24.00   2 12.00 2.53   not sig. 

ABC 2 24 abcσ θ+      6.00   2   3.00 < 1 
Within 2σ  171.00 36   4.75  
Total  287.25 47   

 
The only significant F value is that for A, at about 0.1%, so there is very 
strong evidence of an effect due to factor A, i.e. a difference in the means at 
high and low levels of A. 

 
 



 

 

 
(b) When factor C is random, cτ  will be assumed to have variance 2

cσ , acτ  
etc to have variances 2

acσ  etc, as in the following table. 
 
 
SOURCE E(MS) DF MS  

A 2 2 212 24ac aσ σ θ+ +    1 60.75 2,1
60.75 81
0.75

F = =    not significant 

B 2 2 28 16bc bσ σ θ+ +    2   3.00 2,2 1F <          not significant 

C 2 224 cσ σ+    1 18.75 1,36 3.95F =    not significant 

AB 2 2 24 8abc abσ σ θ+ +    2   0.00 1F <  

AC 2 212 acσ σ+    1   0.75 2ˆ 0acσ =  

BC 2 28 bcσ σ+    2 12.00 2,36 2.53F =     not significant 

ABC 2 24 abcσ σ+    2   3.00 2ˆ 0abcσ =  
Within 2σ  36 4.75  

 
A is tested against AC for the null hypothesis " 0"aτ = , which cannot be 
rejected;  B is tested against BC, and AB against ABC;  all others are tested 
against 2ˆ 4.75σ = .  No τi differs significantly from 0. 

 
 
 
(ii) A confidence interval for the difference between the means of the 2 levels of 
factor A in (a) would show how precisely the difference is estimated.  No further 
action is needed in (b).  In each case, some standard checking of assumptions (using 
descriptive statistics and other diagnostic programs) could be done. 
 
 
 
(iii) This must happen at the planning stage, according to whether interest lies 
specifically in the 2 levels of factor C actually used or whether these were a random 
sample from a larger population of possible levels. 
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