EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

(formerly the Examinations of the Institute of Statisticians)

GRADUATE DIPLOMA, 2001

Statistical Theory and Methods I

Time Allowed: Three Hours

Candidates should answer FIVE questions.
All questions carry equal marks.
The number of marks allotted for each part-question is shown in brackets.

Graph paper and Official tables are provided.

Candidates may use silent, cordless, non-programmable electronic calculators.
Where a calculator is used the method of calculation should be stated in full.

Note that $\binom{n}{r}$ is the same as ${ }^{n} C_{r}$ and that \ln stands for $\log _{e}$.

1. Suppose that the discrete random variables X and Y independently follow Poisson distributions such that
and

$$
\begin{aligned}
& P(X=x)=\frac{e^{-\theta} \theta^{x}}{x!}, \quad x=0,1, \ldots \\
& P(Y=y)=\frac{e^{-\lambda} \lambda^{y}}{y!}, \quad y=0,1, \ldots
\end{aligned}
$$

(i) Show that the random variable $X+Y$ also follows a Poisson distribution.
(ii) Suppose now that $X+Y$ is known to equal z, where z is some non-negative integer. Determine $P(X=x \mid X+Y=z)$ for all possible values of x. What is the conditional distribution of X, given that $X+Y=z$?
(iii) When preparing student handouts, Lecturers A and B make typing errors at random, A at a rate of 1.5 errors per page and B at a rate of 0.5 errors per page. A course handout consists of 6 pages typed by Lecturer A and 12 pages typed by Lecturer B. It is found to contain a total of 14 typing errors. Show that the probability that Lecturer A made at least 10 of the mistakes on this handout is 0.279 .
2. (a) State Bayes' Theorem.
(b) In a multiple-choice examination, each question is linked with 5 possible answers, of which just 1 is correct.
(i) A particular candidate has probability $\theta(0<\theta<1)$ of knowing the correct answer to a question. If the candidate does not know the correct answer, then he chooses one of the possible answers at random. Show that the probability he answers the question correctly is $\frac{1}{5}(1+4 \theta)$.
(ii) When a candidate gives the correct answer, 1 mark is awarded. When a candidate gives the wrong answer, or no answer at all, a fraction $\frac{1}{n}$ of a mark is deducted. Find the value of n that makes the expected mark awarded for one question to the candidate in part (i) equal to θ.
(iii) If the examination consists of 50 questions and n takes the value calculated in part (ii), verify that a candidate must give 34 correct answers in order to obtain 30 marks.

For the case where $\theta=0.75$ independently for each question, find approximately the probability that this candidate's total mark for the examination is at least 30 .
3. (i) The continuous random variable U follows a gamma distribution with probability density function

$$
f(u)=\frac{\theta^{\alpha} u^{\alpha-1} e^{-\theta u}}{\Gamma(\alpha)}, \quad u>0
$$

where $\alpha>0, \theta>0$, and $\Gamma()$ denotes the gamma function. Find the expected value and variance of U.
(ii) The continuous random variables X and Y have joint probability density function

$$
f(x, y)=\theta^{2} e^{-\theta y}, \quad y>x>0 .
$$

Draw a sketch to show the region of the (x, y) plane in which this function is defined. Derive the marginal probability density functions of X and Y and use the result of part (i) to deduce their expected values and variances. Find the correlation between X and Y.
4. $\quad X$ is a standard Normal random variable, with probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right), \quad-\infty<x<\infty
$$

Z is another standard Normal random variable, which is independent of X. The random variable Y is defined by $Y=|Z|$, and so has probability density function

$$
f(y)=\frac{\sqrt{2}}{\sqrt{\pi}} \exp \left(-y^{2} / 2\right), \quad 0<y
$$

(i) Find the joint probability density function of the random variables U and V defined by $U=\frac{X}{Y}$ and $V=Y$.
(ii) Show that the marginal probability density function of U is

$$
\begin{equation*}
f(u)=\frac{1}{\left(u^{2}+1\right) \pi}, \quad-\infty<u<\infty . \tag{7}
\end{equation*}
$$

(iii) This means that U follows the Student's t distribution with 1 degree of freedom. In general, what distributions should X and W follow so that

$$
\frac{X}{\sqrt{W / m}}
$$

follows a t distribution with m degrees of freedom ($m=1,2, \ldots$)? Explain why the result obtained in parts (i) and (ii) is a special case of this general result.
5. (i) Suppose that the discrete random variable X is the number of successes in n independent Bernoulli trials with constant success probability θ (where $0<\theta<1)$. Then X has a binomial distribution, $X \sim B(n, \theta)$. Show that X has moment generating function

$$
M_{X}(t)=\left(1-\theta+\theta e^{t}\right)^{n} .
$$

Hence, or otherwise, find the expected value and variance of X.
(ii) When X is a $B(n, \theta)$ random variable, find the moment generating function of

$$
Z=\frac{X-n \theta}{\sqrt{n \theta(1-\theta)}}
$$

Find the limiting form of the moment generating function of Z as $n \rightarrow \infty$. [Hint: start by finding the limit of the logarithm of this moment generating function.] By recognising the limiting moment generating function of Z, deduce the limiting distribution of Z as $n \rightarrow \infty$.
6. (i) Consider a (potentially infinite) sequence of independent Bernoulli trials, with constant success probability ϕ (where $0<\phi<1$). Let the discrete random variable R be the number of consecutive failures recorded before the first success. Show that R has probability generating function

$$
g_{R}(t)=\frac{\phi}{1-t(1-\phi)}, \quad|t|<\frac{1}{1-\phi} .
$$

Hence find the expected value and variance of R.
(ii) The discrete random variable X and the continuous random variable Y are jointly distributed. Marginally, Y has the probability density function

$$
f(y)=\theta e^{-\theta y}, \quad y>0
$$

(where $\theta>0$). Conditional on $Y=y, X$ follows a Poisson distribution with expected value y. Show that the marginal distribution of X is the distribution described in part (i), for a particular value of ϕ.
(iii) Confirm that, for X and Y defined as in part (ii),

$$
\begin{align*}
& E(X)=E\{E(X \mid Y)\} \\
& \operatorname{var}(X)=E\{\operatorname{var}(X \mid Y)\}+\operatorname{var}\{E(X \mid Y)\} \tag{4}
\end{align*}
$$

7. (a) Let X be any continuous random variable, and let $F(x)$ be its cumulative distribution function. Suppose that U is a continuous random variable which follows a uniform distribution on the interval $(0,1)$, and define the new random variable Y by $Y=F^{-1}(U)$, where $F^{-1}()$ is the inverse function of $F()$. By considering the cumulative distribution function of Y, or otherwise, show that Y has the same distribution as X.
(b) The following values are a random sample of numbers from a uniform distribution on the interval $(0,1)$.
0.205
0.476
0.879
0.924

Use these values to generate 4 random variates from each of the following distributions, carefully explaining the method you use in each case.
(i) Geometric : $\quad P(X=x)=\left(\frac{1}{2}\right)^{x}, \quad x=1,2, \ldots$.
(ii) Pareto: $\quad f(x)=\frac{18}{x^{3}}, \quad x>3$.
(iii) Standard Normal : $f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right), \quad-\infty<x<\infty$.
8. Two urns each contain n balls. Of the total of $2 n$ balls, n are red and n are black. At each step of a random process, one of the balls in each urn is chosen at random and these two balls are then exchanged (so that each urn continues to contain n balls). Let the states of the system be indexed by the number, r, of red balls in the first urn.
(i) Write down the transition probabilities for a Markov Chain model of this process.
(ii) Write down a system of equations that must be satisfied by the stationary distribution, $\underline{\Pi}=\left[\Pi_{0}, \Pi_{1}, \ldots, \Pi_{n}\right]$, of this model.
(iii) For the case $n=3$, solve the stationary equations in order to find $\Pi_{0}, \Pi_{1}, \Pi_{2}$ and Π_{3}.

