

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
SCIENCE			5124/03 5126/03
Paper 3 Chemistry		October/November 200	
			1 hour 15 minutes
Candidates and	swer Section A on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Answer Booklet/Paper

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE ON ANY BARCODES.

Section A

Answer all questions.

Additional Materials:

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Section A		
Section B		
Total		

This document consists of 12 printed pages and 4 lined pages.

Section A

For Examiner's Use

Answer **all** the questions.

Write your answers in the spaces provided on the question paper.

1 (a) Rain water is collected in reservoirs. The water needs to be purified before drinking.

Table 1.1 describes three stages in this process.

Complete the table.

Table 1.1

stages in the purification process	purpose of each stage
flocculation	to lump together small, insoluble particles
	to remove the lumps of insoluble particles
chlorination	

[2]

(b)	(i)	Tap water is not pure. It contains dissolved substances. A process can be used to separate these dissolved substances and the water. What is the name of this process?		
(ii	(ii)	Water is an oxide. Write its chemical formula.		
			[2]	

© UCLES 2007 5124/03/O/N/07

2 (a) Table 2.1 describes the properties of an acid, an alkali and a salt solution.Complete the table.

For Examiner's Use

Table 2.1

solution	colour with Universal Indicator solution	approximate pH	ions present
sodium hydroxide	blue		Na ⁺ , OH [−]
hydrochloric acid	red		
sodium sulphate		7	

		[5]
(b)	Name two solutions which, when mixed together, form a solution of sodium sulphate	
		[1]

3 (a) Fig. 3.1 and Fig. 3.2 show the structures of two allotropes of carbon. In both structures the carbon atoms are shown as black dots.

Fig. 3.1

Fig. 3.2

(i) Name the two allotropes.

Fig. 3.1

Fig. 3.2

(ii) The allotrope in Fig. 3.1 is so hard that it can be used for making the tips of drills. The other allotrope is used as a lubricant as it is very slippery. Use the structures to explain these uses.

For

Examiner's Use

explain these uses.

used for tipping drills

used as a lubricant

used as a lubricant

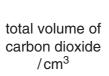
(i) Carbon atoms are also found in calcium carbonate.

Explain why farmers sometimes spread calcium hydroxide on their fields.

(ii) Give two other uses of calcium carbonate.

© UCLES 2007

4 In an experiment indigestion tablets are used to investigate rate of reaction. When these tablets react with an acid, carbon dioxide gas is given off.


For Examiner's Use

Ten tablets are added to an excess solution of sulphuric acid at temperature $\bf A$, and the total volume of gas given off is measured at regular intervals.

The procedure is repeated using sulphuric acid at two different temperatures, **B** and **C**.

In each experiment an excess of the same sulphuric acid solution is used.

Fig. 4.1 shows the results of these investigations.

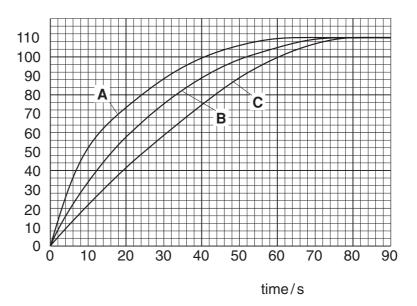


Fig. 4.1

Which of the temperatures A , B and C is the highest?
[1
b) How are the reactions at temperature A and at temperature C different after about seventy seconds?
[1
b) Draw on Fig. 4.1 the curve that you would expect if the experiment were repeated a temperature C but with five tablets.
Use your knowledge of kinetic particle theory to explain why rates of reaction vary wit change in temperature.
[2

5 (a) Fig. 5.1 shows the partly drawn structural formula of ethane and of ethene.Complete the drawings.

For Examiner's Use

Fig. 5.1 [2]

(b) (i) Fig. 5.2 shows part of a molecule of the polymer, PVC.

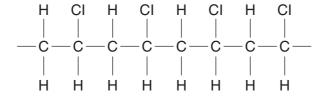


Fig. 5.2

Deduce and draw the structural formula of the monomer from which PVC is made.

(ii) Polymers such as PVC can cause long-term pollution problems. Explain why.

© UCLES 2007 5124/03/O/N/07

6 (a) Calcium, copper and zinc are three metals.

For Examiner's Use

(i) Table 6.1 describes the reaction of these metals with cold water and steam. Put a tick (✓) if a reaction will take place and a cross (✗) if a reaction will not take place. The first has been done for you as an example.

Table 6.1

metal	reaction of metal with cold water	reaction of metal with steam
calcium	✓	✓
copper		
zinc		

	(ii)	Place these three metals in order of chemical reactivity, with the most reactive first.
		most reactive metal
		least reactive metal
	(iii)	Before experimenting with aluminium to place it in the above series, the surface of the aluminium must first be scraped. Why is this necessary?
		[4]
(b)	Give	e two reasons why it is important to recycle metals.
		[2]

7 Fig. 7.1 contains information about substances **D**, **E**, **F** and **G**.

For Examiner's Use

solid D

D is white.

It is formed by burning zinc in oxygen. The product is yellow when hot and white when cold. gas **E**

E is colourless.

It has a constant composition. When magnesium is burnt in the gas, two solids are formed, one white and one black.

solid F

F has a constant composition. It burns in oxygen to form only one product.

solid G

G is blue.

It dissolves in water and its solution can be separated into three dyes by chromatography.

Fig. 7.1

Classify the substances as either an element or a compound or a mixture. Now complete Table 7.2 by placing a tick (\checkmark) in one box in each row.

Table 7.2

substance	element	compound	mixture
D			
E			
F			
G			

[4]

© UCLES 2007

8

		grams in Fig. 8.1 sho n chloride at room te		in copper, sodium chloride and		
	(solid copper	solid sodium chloride	gaseous hydrogen chloride		
			Fig. 8.1			
(a)	(i)	Which of these sub	stances has the lowest melting	point?		
((ii)	Explain why this substance has a low melting point.				
				[2]		
(b)	(i)	At room temperature only one of the three substances conducts electricity.				
		Name this substance.				
((ii)	At very high temperatures a second of these substances will conduct electricity.				
		Name this substance and predict why it will conduct electricity at very high temperatures but not at room temperature.				
				[4]		

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper.

- **9 (a) (i)** In industry, petroleum (crude oil) is separated into several useful substances using a fractionating tower. Describe and explain this separation process.
 - (ii) Explain why all of the substances in petroleum (crude oil) do not reach the higher parts of the tower. [7]
 - **(b)** Methane is separated from natural gas. Methane burns in oxygen to form carbon dioxide and water.
 - (i) Write the chemical equation for this reaction of methane with oxygen.
 - (ii) 3 dm³ of methane are burned in an excess of oxygen. Calculate the volume of oxygen, measured at room temperature and pressure, which reacts with this methane. [3]
- **10** An element has an isotope with the nucleon number of 7. Each neutral atom of this isotope has three electrons and a nucleus containing two different types of particle.
 - (a) (i) Give the names of these particles and the number of each particle present in each nucleus. [4]
 - (ii) Compare the masses and compare the electrical charges of these particles. [3]
 - **(b)** The element has another isotope with atoms that have a nucleon number of six. Compare and contrast the nuclei of these **two** isotopes. [3]

© UCLES 2007 5124/03/O/N/07

11 Fig. 11.1 describes reactions involving a metallic salt.

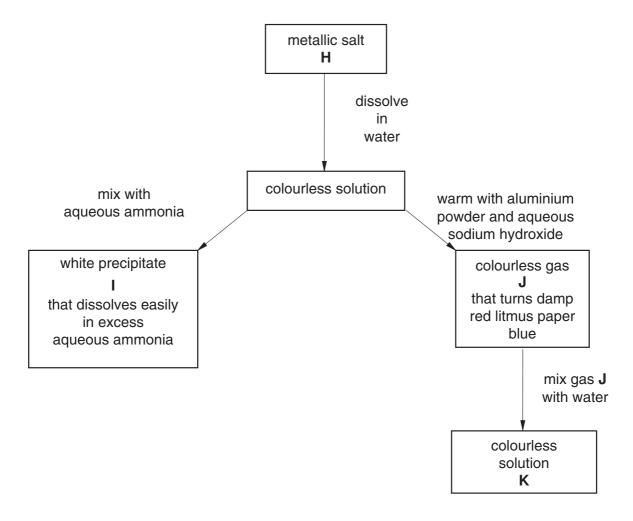


Fig. 11.1

- (a) Name substances H, I, J and K. [5]
 (b) Give the chemical formula for one of H, I, J or K. [1]
 (c) Write the equation for any one of the reactions shown in Fig. 11.1. [2]
- (d) Give two uses of the metal in the metallic salt H. [2]

E

For Examiner's Use

For

	Examiner Use
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.	

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

						F	he Perio	dic Tabl	The Periodic Table of the Elements Group	Elemen	ıts						
_	=							5	3			≡	≥	>	>	=>	0
							T Hydrogen										4 He lium 2
7 Li Lithium	9 Be							7				11 B Boron	12 Carbon 6	14 N Nitrogen 7	16 Oxygen	19 Fluorine	20 Ne Neon 10
23 Na Sodium	24 Mg Magnesium											27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon
39 K	40 Ca Calcium	Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Wn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel	64 Cu Copper 29	Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium	75 AS Arsenic 33	Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
Rb Rubidium 37	Strontium	89 ×	2r Zirconium 40	Niobium 41	96 Moybdenum 42	Tc Technetium 43	101 Rut Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium 49	Sn Tin 50	122 Sb Antimony 51	128 Te Tellurium	127 I lodine	131 Xe Xenon Xenon 54
Caesium 55	137 Ba Barium 56	139 La Lanthanum	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75		192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	Hg Mercury 80	204 Tt Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89															
*58-71 [†90-103	*58-71 Lanthanoid series †90-103 Actinoid series	d series series		140 Ce Cerium	141 Preseodymium	Neodymium	Pm Promethium	150 Sm Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	Yb Ytterbium	175 Lu Lutetium

id series	40 8	‡ T	44 Z	Pm	150 Sm	152 Eu	157 Gd	159 Tb	162 Dy	165 4	167 Er	169 Tm	Yb
20100	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
a = relative atomic mass	232		238										
K = atomic symbol	Т	Ъ	-	Ν	Pu	Am	Cm	BĶ	ర	Es	Fm	Md	8
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102

Key

Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).