	Centre Number	Candidate Number
Candidate Name		

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

SCIENCE

5124/3, 5126/3

PAPER 3 Chemistry

OCTOBER/NOVEMBER SESSION 2001

1 hour 15 minutes

Additional materials: Answer paper

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and on all separate answer paper used.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper. At the end of the examination,

- fasten any separate answer paper securely to the question paper;
- 2. enter the numbers of the **Section B** questions you have answered in the grid below.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 12.

FOR EXAM	NER'S USE
Section A	
Section B	
TOTAL	

This question paper consists of 10 printed pages and 2 lined pages.

Section A

Answer all the questions.

Write your answers in the spaces provided on the question paper.

1 The drawings in Fig. 1.1 represent the particles in six different substances at room temperature and pressure.

Fig. 1.1

Complete the table to show which **one** of the drawings, **A** to **F**, best represents each of the following substances.

You may use each letter once, more than once or not at all.

substance	copper	a gas	a mixture	hydrogen	water
diagram A-F					

[5]

[2]

2 (a) (i) Some hydrocarbons are saturated and others are unsaturated.

Name one example of each.

saturated hydrocarbon

unsaturated hydrocarbon

(ii) Give **one** chemical test by which you could distinguish between the two hydrocarbons you have named in (i), and state the result for each substance.

Test

Result with saturated hydrocarbon

Result with unsaturated hydrocarbon[2]

(b)	Alc	ohols react with a	cids to form esters	s. Ethyl propanoat	e is an ester.	
	(i)	Name two subs	tances that react t	o form ethyl propa	inoate.	
		alcohol				
		acid				[2]
	(ii)		mical test by wh have named in (i)			
		Test				
		Result for alcoho	ol			
		Result for acid .				[2]
(a)		nium is used in opes.	nuclear reactors.	A sample of uran	ium is found to o	consist of two
	(i)	Define isotopes.				
						[1]
	(ii)	Fig. 3.1 describe	es two isotopes of	uranium.		
		Complete the ta	ble.			
		isotope	number of protons in each atom	number of neutrons in each atom	symbol of isotope	
		uranium-235	92	143		-
		uranium-233			²³³ ₉₂ U	[4]
			Fig.	3.1		. [-]
(b)	Bor con	on is used to matains atoms repre	ake control rods f sented by the syn	for a nuclear read	ctor. Naturally oc 3.	curring boron
	(i)	Draw a diagram	of the electronic s	structure of a boro	n atom.	
						[1]
	(ii)	Suggest why the number.	e relative atomic r	mass of naturally o	occurring boron is	s not a whole
				124/3/O/N/01		[1] Turn

4 Details of the oxides of elements in Period 3 of the Periodic Table are shown in Fig. 4.1.

group number of element	I	П	III	IV	V	VI	VII	0
formula of oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₂ O ₅	SO ₃	Cl ₂ O	none
approximate melting point of oxide /°C	900	3000	2000	1500	600	20	-20	

Fig. 4.1

(a) (i)	Determine the valency of an aluminium atom, Al, in its oxide.
	[1]
(ii)	Name, from Fig. 4.1, a basic oxide.
	[1]
(iii)	Name, from Fig. 4.1, an amphoteric oxide.
	[1]
(iv)	Explain why elements in Group 0 do not form oxides.
	[1]
(b) (i)	Give the formula of an oxide from Fig. 4.1 which is not a solid at 19 °C.
	[1]
(ii)	What additional fact is needed to decide whether the oxide named in (i) is a liquid or a gas at 19 °C?
	[1]

		5
(c)	(i)	Chlorine has a proton number of 17. Oxygen has a proton number of 8.
		Draw a 'dot and cross' diagram of the electronic structure of chlorine(I) oxide, ${\rm C}l_2{\rm O}$. Show only the outer electrons.
		[4]
	(ii)	Explain why chlorine(I) oxide has a low melting point.

5

Оху	/gen	is forme	ed during the de	ecom	positic	n.						
(a)	(i)	What is	s a catalyst?									
												[1
	(ii)	Give a	chemical test f	or ox	ygen.							
(b)			decided to stud	-	rate	of dec	compo	sition	of aq	ueous	hydroge	•
(b)	He mix	did this ture at	lecided to stud by adding exactimed intervals the reading at	ctly 1 s. He	rate .0 g of recor	of dec	compo er(II)	sition oxide	of aq to the	ueous soluti	hydrogei on and w	n peroxide eighing the
(b)	He mix	did this ture at	by adding exactimed intervals	ctly 1 s. He	rate .0 g of recor	of dec	compo er(II)	sition oxide	of aq to the	ueous soluti	hydrogei on and w	n peroxide eighing the
(b)	He mix	did this ture at	by adding exactimed intervals the reading at time	ctly 1 s. He 180 s	rate .0 g of recor	of dec	compo er(II) ne los	sition oxide ses o	of aq to the f mas	ueous soluti	hydrogei on and w	n peroxide eighing the
(b)	He mix	did this ture at	by adding exactimed intervals the reading at time /s	otly 1 s. He 180 s	orate .0 g of recor	of decorporate of the composition of the compositio	compo er(II) ne los 120	sition oxide ses o	of aq to the f mas 240	ueous soluti s in a	hydrogei on and w	n peroxide eighing the
(b)	He mix	did this ture at sed out	by adding exactimed intervals the reading at time /s	0 0	rate .0 g of recor	of decopposed the following of the following following for the following fol	compo er(II) ne los 120	sition oxide ses o	of aq to the f mas 240	ueous soluti s in a	hydrogei on and w	n peroxide eighing the

(ii) On Fig. 5.2, draw a graph of loss of mass against time.

Fig. 5.2

	(111)	Use your graph to estimate the missing reading.
		[1]
	(iv)	What was the reaction rate at 300 seconds?
		[1]
(c)	Cop	pper(II) oxide is insoluble in water.
	(i)	Describe how you would separate, collect and weigh what remains of the copper(II) oxide after the decomposition.
		[4]
	(ii)	Is the mass of the copper(II) oxide left after this catalytic decomposition more than 1.0 g, less than 1.0 g or exactly 1.0 g?
		[1]

Section B

Answer any two questions.

Write your answers on the lined pages provided and, if necessary, continue on separate answer paper.

6 (a) Define relative atomic mass.

[2]

(b) Tungsten metal, W, is manufactured by reducing tungsten(III) oxide, WO₃, with carbon.

$$WO_3 + 3C \longrightarrow 3CO + W$$

Calculate

- (i) the mass of carbon needed to reduce 116 g of tungsten(III) oxide, [3]
- (ii) the maximum mass of tungsten that can be formed. [3]

[Relative atomic masses are listed in the Periodic Table on page 12.]

- (c) State and explain how the reactivity of tungsten with oxygen compares with the reactivity of carbon with oxygen. [2]
- 7 (a) Give two uses of ammonia.

[2]

[5]

(b) Fig. 7.1 shows some of the properties and reactions of aqueous ammonia and some other substances.

Fig. 7.1

- (i) Suggest the identity of the substances A, B, C and D.
- (ii) Write the equation, including state symbols, for any one of the reactions in Fig. 7.1. [3]

8	Chl	orine.	bromine and iodine are placed in this order in Group VII of the Periodic Table.
	(a)		e four ways in which the physical or chemical properties of chlorine, bromine and ne are similar. [4]
	(b)	(i)	Describe the trends in physical properties of chlorine, bromine and iodine. [3]
		(ii)	How is the trend in chemical reactivity of chlorine, bromine and iodine shown by displacement reactions? Give an equation for a reaction in which one element displaces another from one of its compounds. [3]
	•••••		
	•••••		
	•••••		

DATA SHEET
The Periodic Table of the Elements

١] !	
		0	4 He Helium	20 Ne on 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71
		IIN		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70
		>		16 Oxygen 8	32 S Sulphur	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium
		>		14 N itrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51	209 B i Bismuth		167 Er Erbium 68
		2		12 Carbon 6	28 Si Silicon	73 Ge Germanium	Sn Tin	207 Pb Lead		165 Ho Holmium 67
		=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T.1 Thallium		162 Dy Dysprosium 66
ts						65 Zn Zinc	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65
The Periodic Lable of the Elements						64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64
le of the	Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63
dic lab	Ğ			7		59 Co Cobalt	Rhodium 45	192 Ir Iridium 77		Sm Samarium 62
he Perio			1 Hydrogen			56 Fe Iron	72 henium			Pm Promethium 61
-						Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59
						51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140 Ce Cerium 58
						48 T Titanium	2 Zrconium	178 Hf Hatnium		
					I	Scandium 21	89 ≺ Yttrium	139 La Lanthanum 57 ,	227 AC Actinium †	d series series
		=		Be Beryllium	24 Mg Magnesium	40 Ca calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series †90-103 Actinoid series
		_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 L †90-103
						5124/3	/O/N/01			

	140	141	144		150		157	159	162	165	167	169	173	
noid series	S	Ŗ	þ	Pm	Sm	Eu	В	Д	δ	웃	ш	Tm	Yb	
old selles	Cerium	Praseodymium	Neodymium	Promethium	Samarium		Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	
	58	59	60	61	62	6	64	92	99	67	89	69	70	7
a = relative atomic mass	232		238											
X = atomic symbol	노	Pa	-	ď	Pu	Am	CB	쓢	ర	Es	Fa	Md	9 N	
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	_

a **X**

Key

Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).