UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

ADDITIONAL COMBINED SCIENCE

5130/02

Paper 2

October/November 2006

2 hours 15 minutes

Additional Materials: Answer Booklet/Paper

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer one part of each of the three questions.

Write your answers on the separate answer paper provided.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Section A				
10				
11				
12				
Total				

This document consists of 17 printed pages and 3 blank pages.

Section A

Answer all the questions.

Write your answers in the spaces provided on the question paper.

1 Fig. 1.1 shows a plant cell.

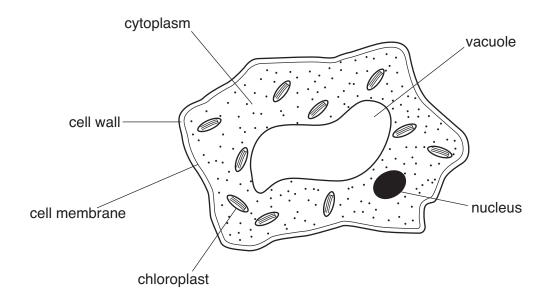


Fig. 1.1

(a) Name the part of the cell that

	(i)	controls the movement of substances into and out of the cell,
		[1]
	(ii)	makes food by the process of photosynthesis.
		[1]
(b)	Roc	t hair cells are specialised plant cells.
	(i)	Which part, labelled in Fig. 1.1, is not present in a root hair cell?
		[1]
	(ii)	Why is this part not needed in a root hair cell?
		[1]

(iii) Explain how the shape of a root hair cell helps it to carry out its function.	
[2]	l
) Suggest two ways in which animal cells differ from the plant cell shown in Fig. 1.1.	
[2]	j

[3]

2 A student makes crystals of magnesium sulphate. She follows the procedure shown in step A to step E in Fig. 2.1, but these steps are shown in the wrong order.

•		
A		Add magnesium oxide a bit at a time until it is in excess and stir.
В		Set aside to cool.
С		Filter the mixture into an evaporating dish.
D	1	Warm 100 cm ³ of dilute sulphuric acid.
E	1	Gently heat to evaporate some of the water.
		Fig. 2.1
(a)	(i) In the boxes, wr has already been	te the letters of steps A , B , C and E in the correct order. Step D written in the correct place for you.
		D

(ii) Suggest how she should separate the crystals of magnesium sulphate from the liquid that is left at the end of this procedure.

.....[1]

(b) Magnesium oxide and sulphuric acid react according to this equation.

$$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$$

The crystals that the student makes have the formula $MgSO_4.7H_2O$.

She uses 50 cm³ of 1.0 mol/dm³ sulphuric acid and an excess of magnesium oxide.

(i) Calculate the number of moles of sulphuric acid contained in 50 cm³ of 1.0 mol / dm³ sulphuric acid.

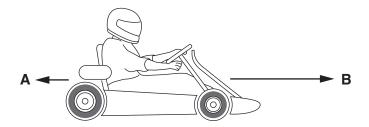
moles of sulphuric acid = [1]

(ii) Calculate the maximum mass of anhydrous magnesium sulphate, MgSO₄, that could be formed.

Show how you work out your answer.

[*A*_r: Mg,24; O,16; S,32.]

mass of anhydrous magnesium sulphate = g [3]


(iii) Calculate the maximum mass of crystals of magnesium sulphate, MgSO₄.7H₂O, that the student could obtain.

Show how you work out your answer.

[*A*_r: Mg,24; O,16; S,32.]

mass of magnesium sulphate crystals = g [2]

Fig. 3.1 shows a go-kart accelerating on a level track. The directions and sizes of two forces, 3 A and B, acting on the go-kart are shown by arrows.

	Fig. 3.1				
(a)		force B , pushing the go-kart forwards, is from the engine. at is the cause of the force A , acting in the opposite direction?			
		[1]			
(b)	force	le it is accelerating, the force B pushing the go-kart forwards is greater than the e A acting in the opposite direction. In pare the sizes of forces A and B when			
	(i)	the go-kart is at a constant speed,			
		[1]			
	(ii)	the go-kart is slowing down.			
		[1]			
(c)	(i)	The go-kart and rider have a mass of $150\mathrm{kg}$. The acceleration of the go-kart is $2.0\mathrm{m/s^2}$. Calculate the resultant force needed to give this acceleration. Show how you work out your answer.			
		force = unit [3]			
	(ii)	The energy released from burning the hydrocarbon fuel is greater than the energy needed to produce force B . Suggest a reason for this.			
		[1]			

4 Fig. 4.1 shows apparatus used to heat a piece of limestone.

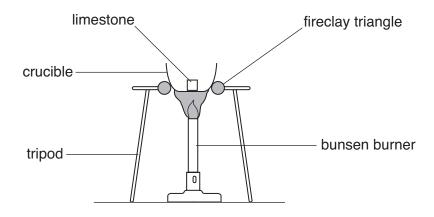


Fig. 4.1

(a)		estone is calcium carbonate. After the limestone was heated, calcium oxide ained in the crucible.
	(i)	Write a balanced equation for the reaction that took place when limestone was heated.
		[2]
	(ii)	What scientific term can be used to describe this reaction?
		[1]
(b)		en the calcium oxide had cooled, water was added to it. An exothermic reaction took ee, forming calcium hydroxide.
	(i)	What is the meaning of the term exothermic?
		[1]
	(ii)	Farmers sometimes spread calcium hydroxide on their fields. Suggest why.
		[2]
(c)		cium carbonate has uses other than the manufacture of calcium hydroxide.

.....[1]

A student investigates the relationship between the current passing through a device and the potential difference across it. He uses the circuit shown in Fig. 5.1. His results are shown in Fig. 5.2.

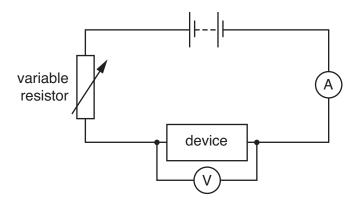
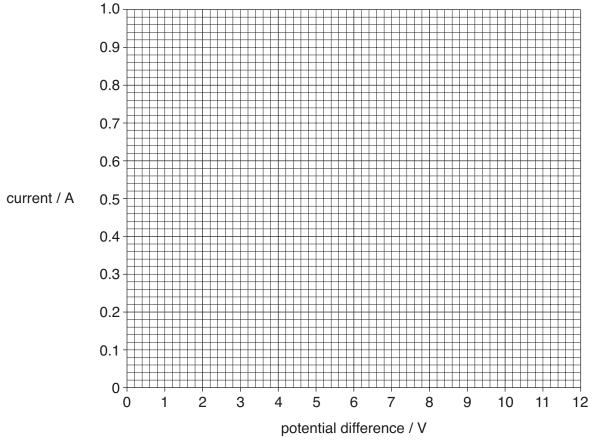


Fig. 5.1

potential difference/V	0	2.0	4.0	8.0	10.0	12.0
current/A	0	0.16	0.34	0.64	0.80	0.96


Fig. 5.2

(a) (i) Plot the student's results on the grid.

[2]

(ii) Finish the graph by drawing the best line through the points.

[1]

	(iii)	The student did not obtain a result for the current at a potential difference of 6.0 V Use your graph to predict this result.	<u>'</u> .
		current at potential difference of 6.0 V = A	1]
(b)	Use	the result shown in Fig. 5.2 at a potential difference of 12.0 V to calculate	
	(i)	the power of the device,	
	(ii)	power = [stance of the device.	
		resistance = ohms [2]

A scientist studying genetics measured the height of ten 18-year-old male students and ten 18-year-old female students. Her results are shown in Fig. 6.1.

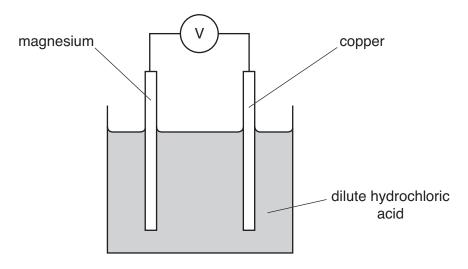

height/cm					
male s	tudents	female s	students		
171	177	156	155		
173 174	169	160	158		
	180	164	162		
165	173	162	150		
174	175	169	166		

Fig. 6.1

(a)	(i)	Calculate the average height of the male students and the average height of the female students. Give your answers to the nearest cm.	пе
		average height of male students = cm	
		average height of female students = cm	[2]
	(ii)	Explain why the average height of the male students is greater than the average height of the female students.	је
			[2]
(b)	Bot	h of the samples of students, male and female, show a variation in height.	
	(i)	What name is given to this type of variation?	
		[[1]
	(ii)	Suggest a reason for this variation, different from your answer to (a)(ii).	
		[[1]

.....[1]

7 A student set up the apparatus shown in Fig. 7.1.

		Fig. 7.1	
(a)		bles of gas are seen around the magnesium. v could you prove that this gas is hydrogen?	
(b)	prod	reaction of the magnesium produces electrons that will flow through the circuit ducing a current. Inplete this ionic equation to show how these electrons are produced.	•
		$Mg \rightarrow \dots + 2e^{-}$]
(c)		eading of 2.7 V is shown on the voltmeter. student repeats the experiment using zinc in place of magnesium.	
	(i)	Describe two ways that the observations using zinc differ from the observations using magnesium.	3
		[2]]
	(ii)	Explain these differences.	
		[1]]
(d)		apparatus shown in Fig. 7.1 could be used as a portable source of electrical energy would this apparatus not be as good for this purpose as a dry cell battery?	' .

[4]

(a) Each of the two diagrams in Fig. 8.1 shows a ray of light travelling in a glass block.
 The critical angle for glass is 42°.
 Complete the two diagrams to show the paths of the light rays.

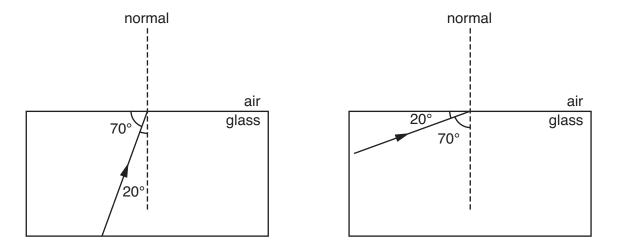


Fig. 8.1

(b) Red light has a wavelength of 6.4×10^{-7} m and a speed of 3×10^{8} m/s. Calculate the frequency of this red light. Show how you work out your answer.

frequency = unit [3]

© UCLES 2006

9 Fig. 9.1 compares some daily nutrient and energy requirements of a one-year-old baby with those of a man and a woman, both aged 18 years.

			daily requirement			
age/years	sex	body mass/kg	iron/mg	protein/g	energy/kJ	
1	either	7	6	20	3 2 0 0	
18	male	60	10	80	12 000	
18	female	55	12	58	9 000	

	10	lemale	55	12	36	9000					
			Fig.	. 9.1							
(a) Calculate the energy requirement to the nearest kilojoule per kg of body mass											
	(i) for the one-year-old baby,										
	(ii) for th	e 18-year-o	ld man.	energy requ	uirement =	kJ/kç	j [1				
(b)	The energing 18-year-o	ld man.	ent, per kg, is mu			kJ/kç					
(c)			an requires more			-old man.	[1				
							[3				

(d)	A scientist measured the daily energy requirements of several 18-year-old men. He found that they varied from 9000 to 15000 kJ. Suggest an explanation for this variation.
	[2
(e)	Why does the body need protein?

Section B

Answer one part, (a) or (b) of each of the three questions.

Write your answers on the separate answer paper provided.

10 Either

- (a) When the enzyme amylase is added to starch solution under suitable conditions, starch molecules are quickly broken down to maltose. Starch reacts with iodine to give a dark blue/black colour, but maltose does not react with iodine.
 - (i) Use this information to design an experiment to investigate the effect of an increase in temperature on the activity of amylase. Describe clearly how you would carry out the experiment and give the results you would expect. [7]
 - (ii) Explain why an increase in temperature has an effect on the enzyme activity. [3]

Or

- (b) Cigarette smoking is associated with an increased risk of coronary heart disease.
 - (i) State other health problems that are thought to be caused by cigarette smoking and suggest what measures might be taken by government to reduce the harmful effects of smoking on health. [5]
 - (ii) Describe coronary heart disease. Suggest other factors, in addition to cigarette smoking, that contribute to this disease. [5]

11 Either

- (a) (i) List the gases that are found in normal air, and give its approximate composition by percentage volume.
 - Give examples of the uses of **two** of the gases present in the air.

[6]

[4]

- (ii) Name one major pollutant of air.
 - State the source of this pollutant and describe the problems that it causes.

Or

- (b) (i) Describe how the unsaturated hydrocarbons called alkenes are manufactured and explain why they are useful industrial chemicals. [5]
 - (ii) Construct an equation for the formation of poly(ethene) and describe some uses of this polymer. [5]

12 Either

- (a) (i) Describe how you would show that a bar magnet will induce an electric current in a coil of copper wire.
 - State **two** factors that affect the magnitude of the induced e.m.f. [6]
 - (ii) Explain how the principle of electromagnetic induction is used in an a.c. generator. [4]

Or

- (b) (i) List **three** ways of transfer of thermal energy. For each of these ways of energy transfer state which take place in a solid, in a liquid, and in a gas. [4]
 - (ii) Fig. 12.1 shows the outline of a house in a hot country. Air conditioning maintains the temperature in the house at 20 °C, whilst the temperature outside the house is usually between 25 and 35 °C. The air conditioning has to be run continuously because heat energy is transferred into the house.

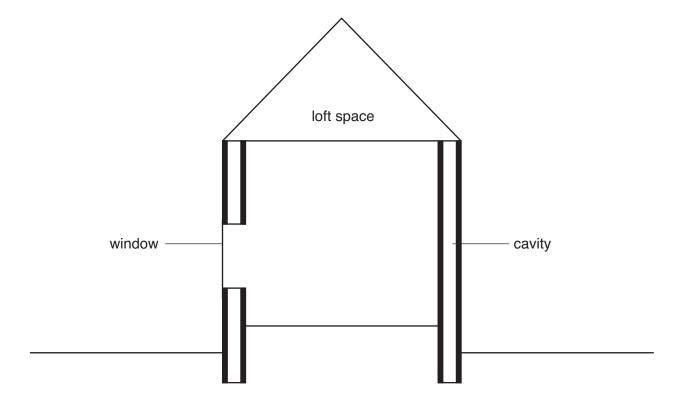


Fig. 12.1

State and explain **three** ways to reduce the transfer of heat into the house. [6]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Ī DATA SHEET ć F

		0	4 He Helium	20 Ne Neon	40 Ar Argon 18	84 K rypton 36	131 Xe Xenon 54	Rn Radon 86	
The Periodic Table of the Elements	Group	NII		19 T Sluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85	
		N		16 Oxygen 8	32 S Sulphur 16	Selenium	128 Te Tellurium	Po Polonium 84	
		^		Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth	
		//		12 Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin 50	207 Pb Lead 82	
				11 B Boron	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T.1 Thallium 81	
						65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80	
						64 Cu Copper	108 Ag Silver 47	197 Au Gold 79	
						Nickel	106 Pd Palladium 46	195 Pt Platinum 78	
						59 Cobalt Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77	
			1 X Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 OS Osmium 76	
				J		55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafinium 72	
						45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum *	Actinium + 89
		=		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88
		_		7 Li Lithium 3	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87
200	06					5130/02	2/O/N/06		

Berkelium 159 **7** Terbium Gadolinium 64 157 **Gd** Curium 152 **Eu** Europium **Am** Samarium 150 **Sm** Pu **Neptunium** Pm Neodymium ‡ **B** 238 Praseodymium 59 ± ₽ Ра 232 **Th** Thorium 140 **Cerium** 28 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol *58-71 Lanthanoid series †90-103 Actinoid series **в** 🗙

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Lr Lawrencium 103

Mendelevium 101

βg

Fa Fermium

Einsteinium

ರ

175 **Lu** Lutetium

169 **Thulium**

167 **E**rbium

165 **Holmium**

162 **D**

89

Ytterbium 173 **S**