

XINMIN SECONDARY SCHOOL 新民中学

SEKOLAH MENENGAH XINMIN

Preliminary Examination 1998

SCIENCE(PHYSICS) 5142 / PAPER 2 SECONDARY 4 EXPRESS / 5 NORMAL THURSDAY, 3 SEPTEMBER 1998 SETTER: CHIA KH VETTER: M SHONE

Name:	()	Class:	_
-------	---	---	--------	---

INSTRUCTIONS TO CANDIDATES

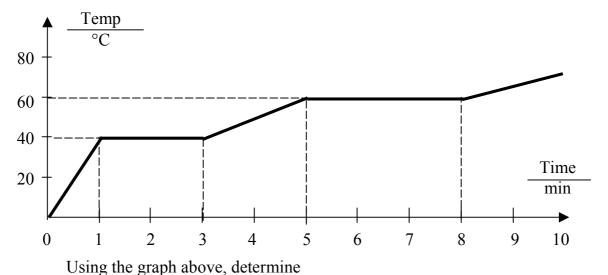
- 1 Fill in your name, index number and class in the space above.
- 2 Time allowed: 1 hour 15 minutes.
- 3 The question paper consists of two sections.

Section A

Answer all of the questions in the spaces provided in this booklet.

Section B

Answer any TWO of the questions on the writing paper provided.


- 4 Calculators may be used.
- 5 This booklet consists of 11 numbered pages.

Where necessary assume the following values:

Speed of light, $c = 3 \times 10^8$ m/s Acceleration due to gravity, $\mathbf{g} = 10$ m/s²

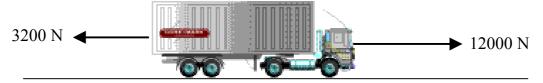
Answer all the questions in the spaces provided.

A1 A substance, initially in the solid state, was heated by a 800 W heater. The temperature was taken at regular intervals and the temperature-time graph plotted as shown in the figure below.

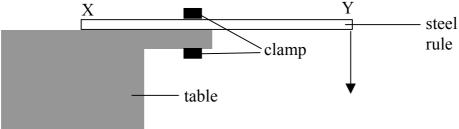
(a) the melting point of the substance,

[1]

(b) the boiling point of the substance,


[1]

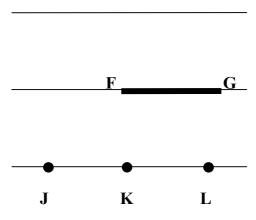
(c) the time taken for the substance to boil.


[1]

Explain why it takes the substance a longer time to increase its temperature by 1 K when it is in the gaseous state as compared to its solid state. [1]

A2 The figure below shows a truck of mass 2500 kg moving along a straight, level road. The engine enables a forward force of 12000 N to act on the truck. There are also counter forces that total 3200 N acting against the truck.

- (a) Calculate the acceleration of the truck.
- (b) As the truck goes faster with the same forward force, its acceleration becomes less. Eventually, the truck travels at a constant speed. Explain why this happens. [3]
- A3 A steel rule XY is clamped over the edge of a table. The end Y is pulled down and released. A note is produced as the rule vibrates.

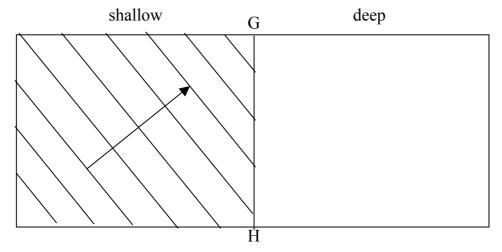


What effect (if any) would be heard

- (a) as the vibration of the rule "dies away", [1]
- (b) if Y is pulled further down and then released, [1]
- (c) if the distance between Y and the clamp is increased. [1]

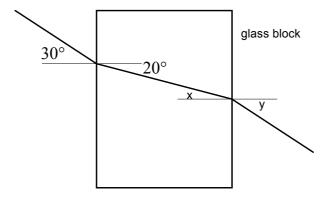
[2]

A4 Three parallel equidistant straight lines are drawn as in the figure below. A plane mirror FG is placed on the middle line. Two objects K and L are positioned on one line in front of the mirror. An observer stands at J. By drawing suitable rays, decide which object(s) (K and/or L) an observer at J can see in the mirror.


The observer at J can see object(s) at

A5 An electric motor is rated 230 V, 150 W.

(a) What current does the motor draw when it is connected and loaded correctly? [2]

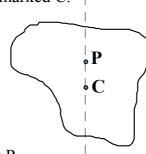

(b) Calculate the resistance of the motor.

A6 The figure shows some oil in a ripple tank which has shallow and deep sections. The waves are produced in the shallow section and proceeded towards the deep end. There is a distance of 0.6 m between wave crests and their frequency is 35 Hz.

(a) What is the velocity of the waves in the shallow section?

- (b) Complete the figure above to show the waves in the deep section. [2]
- A7 The figure shows the path of the light ray through a glass block and into the air again.

[2]

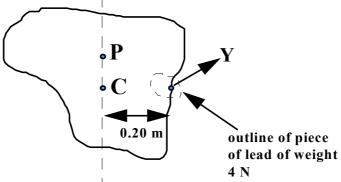

(a) Using the information given in the diagram, determine the refractive index of the glass block. [2]

(b) State the angles x and y. [1]

x =______; y =______.

(c) Given that the speed of light in air is 3.0 x 10⁸ m/s, what is the speed of light in glass? [2]

A8 The diagram represents an irregularly shaped flat metal sheet freely pivoted at P on a horizontal pivot so that the plane of the sheet is vertical. The centre of gravity of the sheet is marked C.

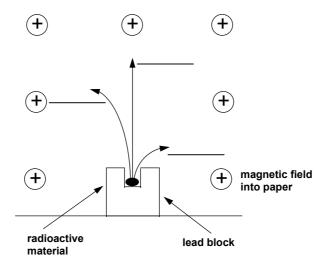


(a) State why C is vertically below P.

(b) Briefly explain how you would attempt to check that C is the centre of gravity of this sheet. [2]

[1]

A piece of lead is now fixed to the sheet so that its weight 4 N acts at Y. The distance CY is 0.20 m.

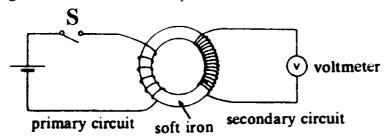


(c) The loaded sheet is held steady in its original position. Calculate the turning effect about P of the weight of the lead. [2]

(d) If the loaded sheet is now released, describe the subsequent motion of the sheet until it finally stops moving. [1]

A9 Draw in the space below a labelled diagram of a transverse wave of amplitude 3 cm and a wavelength of 6 cm. [2]

A10 (a) The diagram below represents a simple experiment used to demonstrate that three forms of radiation are emitted from a particular radioactive source. The experiment is carried out in a region where there is uniform magnetic field.



- (i) Label the diagram to show which kind of radiation is emitted by each track.
- (ii) Which form of radiation would be most penetrating? Explain why it is so. [2]

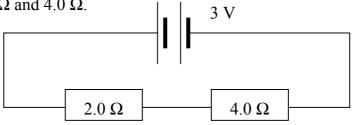
- (b) A nucleus of the radioactive isotope 24 Na emits a β -particle when it decays to a nucleus of the element Mg.
 - (i) Complete the equation representing this event: [2]

(ii) How many neutrons are there in an atom of **Mg** mentioned above? [1]

A11 The diagram below shows a simple transformer.

Switch S was then closed.

(a) Describe briefly what is seen when the switch **S** is closed. [2]

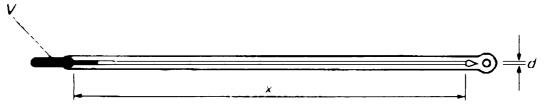

(b) Describe briefly what is seen when the switch **S** is opened. [2]

Answer any TWO of the questions on the paper provided.

- **B1** (a) State the nature of α-emissions, β-emissions and γ-emissions. Comment on their relative sizes and charges. [4]
 - (b) Sodium-24 is a radioactive isotope decaying into a stable magnesium atom by the emission of β and γ -emissions. The following shows the count rate of a sample of sodium-24 over a 60 hour period.

Time (hours)	0	12	24	36	48	60
Count Rate (counts/second)	200	115	67	38	23	12

- (i) On graph paper plot a graph of **count-rate** against **time**.
- (ii) Use the graph to calculate the half-life of sodium-24. [6]
- **B2** The figure below shows a battery of e.m.f. 3 V in series with resistors of resistance 2.0 Ω and 4.0 Ω .


- (a) Explain what is meant by "e.m.f. of 3 V". [1]
- (b) State the combined resistance of the 2.0 Ω and 4.0 Ω resistors. [1]
- (c) Calculate the current passing through the 4.0Ω resistor. [2]
- (d) How much charge passes through the battery in one minute? [1]
- (e) The resistors are now placed in parallel with each other.
 - (i) Redraw the circuit to show the resistors in parallel.
 - (ii) Calculate the current flowing through the 4.0 Ω resistor.
 - (iii) Calculate the power drawn from the battery. [5]

B3 (a) Draw a labelled diagram to show the essential parts of a transformer that could be used to provide a 24 V supply from the 240 V mains supply.

[5]

[5]

(b) The diagram below shows a cross-sectional view of a liquid-in-glass thermometer. The volume of the bulb is V and the bore in the stem has length x and diameter d.

State, with reasons, the effect on the thermometer's range and sensitivity of

- (i) increasing the length of the stem, x,
- (ii) increasing the diameter of the bore, d,
- (iii) making the glass around the bulb thinner.

For such a thermometer suggest a suitable liquid to use stating two reasons for your choice.