

SCIENCE (PHYSICS) 5142 / 5
 SECONDARY 4 EXPRESS / 5 NORMAL WEDNESDAY, 17 SEPTEMBER 1997 SETTER: M SHONE

Name: \qquad () Class: \qquad

INSTRUCTIONS

1 Time allowed: 45 minutes.
2 Calculators may be used.
3 When handing in staple the graph paper to the back of this question booklet.
4 Ensure that measurements and calculated values are recorded to a suitable accuracy.

5 This booklet consists of 5 numbered pages.

You may take the value of π to be 3.14 .

Before beginning the exercises you are advised to read the instructions

 carefully and completely, so that you know exactly what has to be done.1 You are going to perform an experiment to find the value of the acceleration due to gravity, g, using a pendulum.
a) Attach the pendulum bob to one end of the string and clamp the other end between the two halves of the split cork as shown in figure 1.

figure 1
b) Set the length of the string, l, to approximately 50 cm . Accurately measure the length of \boldsymbol{l} using the meter rule.

Record of the length of the string, l :

c) Pull the bob slightly to one side and release it such that it swings freely from side to side as shown in figure 2.

amplitude A
figure 2
d) Record the time taken for the bob to make 25 complete oscillations.

Record of the time taken for twenty five complete oscillations, \boldsymbol{t}_{25} :

e) Using your answer to d), calculate an average value for the period of the pendulum. The period is the time taken for one complete oscillation.

Calculation of the period of the pendulum, T :
f) Calculate the square of the period of the pendulum.

Calculation of the square of the period of the pendulum, $\mathrm{T}^{\mathbf{2}}$:
g) Repeat steps b) to f) taking at least four more readings varying the length of the string, l, from 30 cm to 1 m .

Record you results in the table below:

\boldsymbol{l} (cm)	\boldsymbol{t}_{25}	\mathbf{T} (s)	
			$\mathbf{T}^{\mathbf{2}}$ (s)

h) On the graph paper provided plot a graph of \mathbf{T}^{2} (y-axis) against \boldsymbol{l} (x-axis).
i) Find the gradient of the graph, \mathbf{m}.

Calculation and record of gradient, m:
j) Given that the acceleration due to gravity, g, can be found from the equation

$$
\mathrm{g}=\frac{2 \pi^{2}}{\mathrm{~m}}
$$

calculate g from your graph.
Calculation and record of the acceleration due to gravity, g:
k) With reference to figure 2 explain what is meant by one complete oscillation.

1) State clearly one precaution that you undertook while carrying out this experiment.
