

XINMIN SECONDARY SCHOOL

新民中学

SEKOLAH MENENGAH XINMIN

Preliminary Examination 1997

SCIENCE (PHYSICS) 5142 / 5 SECONDARY 4 EXPRESS / 5 NORMAL WEDNESDAY, 17 SEPTEMBER 1997 SETTER: M SHONE

Name:	()	Class:
-------	---	---	--------

INSTRUCTIONS

- 1 Time allowed: 45 minutes.
- **2** Calculators may be used.
- 3 When handing in staple the graph paper to the back of this question booklet.
- **4** Ensure that measurements and calculated values are recorded to a suitable accuracy.
- 5 This booklet consists of 5 numbered pages.

You may take the value of π to be 3.14.

Before beginning the exercises you are advised to read the instructions carefully and completely, so that you know exactly what has to be done.

- 1 You are going to perform an experiment to find the value of the acceleration due to gravity, g, using a pendulum.
 - a) Attach the pendulum bob to one end of the string and clamp the other end between the two halves of the split cork as shown in *figure 1*.

b) Set the length of the string, *l*, to approximately 50 cm. Accurately measure the length of *l* using the meter rule.

Record of the length of the string, *l*:

c) Pull the bob slightly to one side and release it such that it swings freely from side to side as shown in *figure 2*.

d) Record the time taken for the bob to make 25 complete oscillations.

Record of the time taken for twenty five complete oscillations, t_{25} :

e) Using your answer to d), calculate an average value for the period of the pendulum. The period is the time taken for **one** complete oscillation.

Calculation of the period of the pendulum, T:

f)	Calculate the square of the period of the pendulum.				
	Calculation of the square of the period of the pendulum, T2:	[1]			

g) Repeat steps b) to f) taking at least four more readings varying the length of the string, *l*, from 30 cm to 1 m.

Record you results in the table below:

[2]

(cm)	t 25 (s)	T (s)	T ² (s)

- h) On the graph paper provided plot a graph of T^2 (y-axis) against l (x-axis). [5]
- i) Find the gradient of the graph, \mathbf{m} .

Calculation and record of gradient, m:

[2]

j)	Given that the acceleration	due to gravity, g,	can be found from t	the equation

$$g = \frac{2\pi^2}{\mathbf{m}}$$

calculate g from your graph.

Calculation and record of the acceleration due to gravity, g: [2]

k) With reference to *figure 2* explain what is meant by one complete oscillation. [1]

1) State clearly one precaution that you undertook while carrying out this experiment. [1]