Mark Scheme (Results) Summer 2008

GCE

GCE O Level Physics

7540/02

7540/02 0-LEVEL PHYSICS MARK SCHEME - JUNE 2008

Question Number	Answer	Mark
1(a)(ii)	\bullet air drag/ air friction/air resistance	
	Notes (air drag) increases with speed/velocity	$\mathbf{1}$

Question Number	Answer	Mark
1(a)(iii)	2 marks for the correct calculation - see below. - $55=2.2 \times$ t or $t=55 / 2.2$ - $=25 \mathrm{~s}$ UP Notes award both marks for 25 s without working	

Question Number	Answer	Mark
1(a)(iv)	2 mark for the correct calculation using one of the methods shown below. Using average speed x time - $55 / 2 \times 25$ - $=687.5 / 688(\mathrm{~m})$ or using $s=1 / 2$ at 2 - $s=1 / 2 \times 2.2 \times(25)^{2}$ - $=687.5 / 688(\mathrm{~m})$ or using $v^{2}=2$ as - $55^{2}=2 \times 2.2 \times s$ - $s=687.5 / 688(\mathrm{~m})$ Notes Allow reverse argument to show that in 700 m plane reaches $55.5 / 56 \mathrm{~m} / \mathrm{s}$ at 700 m or takes 25.2/25.23/25.226 s to reach 700 m	1 1 or 1 1 or 1 1 (2)

Question Number	Answer	Mark
1(a)(v)	Any two points from the list below - - less area/ more streamlined/smoother surface/ aerodynamic - less (air) drag/(air) friction/(air)resistance - larger unbalanced/net/resultant force Notes - Allow reverse argument eg otherwise area would be greater (than if not folded) - Ignore wheels not needed - ignore ground friction	$\begin{array}{\|l\|} 1 \\ 1 \\ 1 \end{array}$ (2)

Question Number	Answer	Mark
1(b)(i)	Any two points from the list below	
	- metre rule/ruler/measuring tape/ allow - distance scale blocks/books/wedges (to raise/compensate) (more) (ticker) tapes or power supply (for timer)	$\mathbf{1}$
Note Do not accept "a ramp", balance or elastic bands or weights or masses	$\mathbf{1}$	

Question Number	Answer	Mark
(b)(iii)	1 mark for the correct reason - shown below.	
-not friction compensated/not allowed for friction/some force is used to overcome friction/there is friction	1	(1)
note- ignore "because force is not directly proportional to acceleration - this mark may be awarded here if friction compensated is seen in b(iv)		

Question Number	Answer	Mark
1(b)(iv)	- tilt/raise (left hand end of) runway or A/use a ramp/ use a smooth surface/lubricate the surface - so trolley runs at constant speed/moves with no acceleration	$\mathbf{1}$
Notes \bullet independent of answer to (iii) if compensate for friction is seen here and if no marks awarded in b(iii) then return to b(iii) and award that mark in b(iii) only not here		

Question Number	Answer	Mark
2(a)(i)	- mass $=1.2 \times 7$ - $=8.4(\mathrm{~kg})$ (UP only if given as final answer) - weight = 84 N UP Notes 84 N with no working scores 3 marks 84 with no working scores 2 marks 8.4 kg with or without working scores 2 marks 8.4 N with or without working scores 1 mark 8.4 with or without working scores 1 mark	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ (3)

Question Number	Answer	Mark
2(a)(ii)	- Attempt to convert temperatures to Kelvin (eg use of 237 or -273) - $7 / 288=\mathrm{V}_{2} / 327$ correct conversion only - $V_{2}=\underline{7.9479 / 7.948 / 7.95 / 7.9} \mathrm{~m}^{3} \mathbf{U P}$ Notes Working and answer must be seen for 3 marks. ignore further rounding to $8 \mathrm{~m}^{3}$ or allow 1 mark only for the following working shown below - temperature in Celsius - $7 / 15=V_{2} / 54$ - $V_{2}=25.2 / 25 \mathrm{~m}^{3}$	1 1 1 or (0) (1) (0) (3)

Question Number	Answer	Mark
2(a)(iii)	1 mark for each correct effect - shown below. Density smaller/less/reduced/decreases Weight same/unchanged/does not change/ no effect	$\mathbf{1}$

Question Number	Answer	Mark			
2(b)(i)	1 mark for the correct process - shown below.				
	• Radiation/heat radiation/thermal radiation /infra red/infra red radiation	$\mathbf{1}$	(1)		
radiation/radioactivity				\quad	
:---					

Question Number	Answer	Mark	
2(b)(ii)	1 mark for the correct process - shown below. • conduction/convection Note allow phonetic spelling	$\mathbf{1}$	
		(1)	

Question Number	Answer	Mark	
2(b)(iii)	- $\frac{\text { molecules/particles move faster/gain KE/gain }}{\text { kinetic energy (not just "gain energy") }}$	$\mathbf{1}$	
	-more frequent collisions (with walls) harder collisions (with walls)/greater rate of change of momentum	1	1

Question Number	Answer	Mark
2(c)(i)	- correct scale for x axis $-2 \mathrm{~cm}=5^{\circ} \mathrm{C}$ (only) - labels and units on both axes (minimum upthrust N and temperature ${ }^{\circ} \mathrm{C}$ - plots (-1 each incorrect $\pm 1 \mathrm{~mm}$ or outside grid) - straight line (not joining the plots with straight lines) Notes: - Use of an x axis scale of $1 \mathrm{~cm}=5^{\circ} \mathrm{C}$ or better can score up to 4 marks. X axis scale less than this cannot score plotting marks - Linear graph can only score label and units mark - Accept ${ }^{\circ} \mathrm{C}$ or C for unit	1 2 1 (5)

Question Number	Answer	Mark	
2(c)(ii)	• $32.5^{\circ} \mathrm{C}$ accept $32{ }^{\circ} \mathrm{C}$ to $33^{\circ} \mathrm{C}$ UP		
	Notes: Accept ${ }^{\circ} \mathrm{C}$ or C for unit	$\mathbf{1}$	(1)

Question Number	Answer	Mark	
2(c)(iii)	1 mark for correct method (shown on graph) - correct line across and/or down (not just a dot)	$\mathbf{1}$	

Question Number	Answer	Mark
2(c)(iv)	1 mark for the correct reason - shown below.	
	- upthrust bigger/larger/more than weight /	
$106.7(\mathrm{~N})$ is greater than 100(N)	$\mathbf{1}$	

Question Number	Answer	Mark
3(a)(i)	- reflection/ (ray) A reflected/ reflective - $\quad \mathrm{i}=\mathrm{r}$ / angle of incidence $=$ angle of reflection Notes - (total) internal reflection loses first mark - angle of incidence = angle of reflection could gain both marks - independent marks	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ (2)

Question Number	Answer	Mark	
3(a)(ii)	- refraction - bends towards normal/ slows down (in glass)/ refractive index of glass more than ri of air / accept less dense to more dense/	$\mathbf{1}$	

Question Number	Answer	Mark	
3(a)(iii)	$\mathbf{1}$ mark for the correct answer.		
	• B	$\mathbf{1}$	

Question Number	Answer	Mark	
3(b)(i)	1 mark for correctly drawn arrows on both diagrams. - minimum of two out of three correct arrows on air rays on each diagram	$\mathbf{1}$	(1)

Question Number	Answer	Mark	
3(b)(ii)	-reflection/ to reflect light /otherwise light would not be reflected /silver is a good reflector Do not accept total internal reflection here	$\mathbf{1}$	(1)
Question Number	Answer	Mark	
3(b)(iii)	1 mark for each correct reason - too much light entering eye (from headlights)/person would be blinded/driver will have glare eye would to be in wrong position (for driving) / driver would be looking down (instead of forwards)	$\mathbf{1}$	(2

Question Number	Answer	Mark
3(c)(i)	2 marks for the correct calculation - shown below. - $\sin 17^{\circ} \div \sin 11^{\circ}$ - $=1.5 / 1.53 / 1.532 / 1.5323$ Notes - award both marks for correct answer with no working but 1.5 with no working scores $0 / 2$ - $17 / 11=1.545$ scores $0 / 2$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ (2)

Question Number	Answer	Mark	
3(c)(ii)	1 mark for the correct answer .	- total internal reflection	$\mathbf{1}$

Question Number	Answer	Mark
3(c)(iii)	- $1.53=1 \div \sin x / x=\sin ^{-1}(1 / 1.53)$ must ECF from $c(i)$ - $\mathrm{x}=41 / 40.7^{\circ} / 40.8^{0} / 40.81 / 40.74 / 40.739$ Notes - actual answers depend on value entered in calculators - ecf for 1.5 from c(i) allow 42/41.8/41.81 - correct answers from list with no working score both marks - degree symbol not required - ignore a further angle slightly larger than calculated value - 41 obtained using protractor to measure diagram scores $0 / 2$	1 1 (2)

Question Number	Answer	Mark
3(c)(iv)	1 mark for the correct explanation from list below below. - angle x must be greater than critical angle - incident angle greater than critical or 40.7/40.8 - angle x is the critical angle so anything bigger gives TIR or is reflected Notes - allow c or C for critical angle if used in c(iii) - allow greater than or equal to c - allow reverse argument	(1)

Question Number	Answer	Mark
3(d)	Apply scheme in bold to raybox method and italics answers to real and apparent depth method Award any 4 points from items 1 to 7 and any one point from 8 to 9 1. use or place (rectangular glass) block on paper 2. use raybox/pins/over mark on paper 3. indicate record/measure/note $\mathbf{i} /$ measure actual or real depth of block 4. measured between normal and incident ray/ look down through block 5. indicate/ record/measure /note \mathbf{r} / locate position of image 6. use of protractor/ / measure apparent depth or distance from top surface 7. repeat for different $\mathbf{i} /$ repeat readings 8. $\mathbf{n}=\boldsymbol{\operatorname { s i n }} \mathbf{i} / \boldsymbol{\operatorname { s i n }} \mathbf{r} /$ Calculate $\mathrm{RI}=$ real/apparent depth 9. slope of $\boldsymbol{\operatorname { s i n }} \mathbf{i} \mathbf{v} \boldsymbol{\operatorname { s i n }} \mathbf{r}$ graph/ average values of RI/ take average of values Note - Marks 1 to 6 can be given if seen on labelled diagram for both methods	

Question Number	Answer	Mark
4(a)(ii)	2 marks for the correct calculation from two options shown below. - $360(000) \times 0.025$ - $=9000 \mathrm{~J} / 9 \mathrm{~kJ}$ UP or - 0.10×0.025 - $=0.0025 \mathrm{kWh}(2.5 \mathrm{~Wh})$ UP Notes - treat $360 \times 0.025=9 \underline{\mathrm{~J}}$ as $\mathbf{U P}$ so scores 1 mark - allow answer by ratios	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ (2)

Question Number	Answer	Mark
4(b)(i)	4 marks for the correctly completed equation - - $\mathrm{Pu}(238)$ bottom number is 94 - alpha top number is 4 bottom number is 2 - U (92) top number is 234	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

Question Number	Answer	Mark
4(b)(ii)	- 2 half lives/ $1: 1 / 2: 1 / 4$ - 176 years UP Note mark each point separately	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ (2)

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(iii) | 1 mark for the correct answer- shown below.
 - Box 1 nuclear or atomic | |

Question Number	Answer	Mark
4(c)	- alpha has short range/ stopped by 4 cm to 10 cm air - alpha cannot penetrate/is stopped by aluminium/is absorbed by aluminium Note - $\quad 2^{\text {nd }}$ line on its own scores both marks - ignore other radiations or other irrelevant facts	1 (2)

Question Number	Answer	Mark
4(d)(ii)	2 marks for the correct reasons - shown below.	
-source is (radio)active/Pu still emits alpha after 4 hours long half life/ 4 h is (much) less than half life/ half life is 88 years	1	

Question Number	Answer	Mark
5(a)(i)	Correct definition - from list shown below. - maximum displacement - maximum distance from mean/normal/central /rest/zero/ equilibrium position - distance between crest (or trough) and mean/normal/central /rest/zero/ equilibrium position Note allow a suitable diagram	(1)

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 5(a)(ii) | 1 mark for the correct definition
 - number of cycles or vibrations or oscillations
 or waves in unit time or per second | $\mathbf{1}$ |

Question Number	Answer	Mark
5(a)(iii)	1 mark for a correct definition - from list shown below. - distance between two points in phase - distance between two adjacent peaks - distance between two adjacent troughs - distance between two identical points on adjacent waves Note allow a suitable diagram	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ (1)

Question Number	Answer	Mark
5(a)(iv)	2 marks for the correct definition - shown below. - (maximum amplitude) when driving/applied frequency - equals natural frequency of system (wire) or - when string or system or object is made to vibrate - at natural frequency of system (wire)	1 1 (2)

Question Number	Answer	Mark
5(b)(i)	1 mark for the correct factor - shown below.	
- load / type of wire / temperature /tension/ material of wire/ diameter of wire/ thickness of wire/ mass per unit length of wire	$\mathbf{1}$	

Question Number	Answer	Mark	
5(b)(ii)	1 mark for each correct piece of equipment. - rule/metre rule/measuring tape/ distance scale - tuning fork(s) - piece of paper (to put on wire) - balance (to measure mass/weight of load or wire) - thermometer to see if temperature is constant	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	

Question Number	Answer	Mark	
5(b)(iv)	2 marks for correctly drawn table - shown below.		
	columns headed with both names both columns with suitable units eg • length - frequency $\mathrm{m} \quad \mathrm{Hz}$	$\mathbf{1}$	
	ignore any additional headings	(2)	

Question Number	Answer	Mark		
5(c)	no mark awarded for labelling axes - as f inc I dec ora e the shorter the length the higher the frequency	1 frequency is inversely proportional to length	\quad	(1)
:---				

Question Number	Answer	Mark	
5(d)(i)	1 mark for correctly drawn sketched graph.		
	• horizontal non-zero line (by eye)	$\mathbf{1}$	

Question Number	Answer	Mark
5(d)(ii)	1 mark from list shown below. All dependent on previous answer - frequency increases, λ decreases, $f \times \lambda$ constant - \quad speed $=$ frequency x wavelength if f inc, λ dec - speed does not depend on frequency	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

