Centre No.			Paper Reference Surname							Initia	ll(s)
Candidate No.		7	5	4	0	/	0	2	Signature	'	
	Paper Reference(s) 7540/02	<u>'</u>	•					•	Е	xaminer's use	e only
	Londo	n]	Ex	aı	mi	na	tio	on	s GCE Tea	m Leader's u	ise only
	Physics										
	Ordinar	y Le	evel	l						Question Number	Leave Blank
	Paper 2									1	
	Friday 9	May	z 20	008	5 — 1	Afte	erno	oon	l	2	
	Time: 2 h	ours								3	
									4		
	Materials requir	ed for ex	xamin	ation	. Ito Ni		cluded	l with	question papers	5	
T «4 4	to Condidates										
In the boxes ab Check that you	ove, write your centre nut have the correct questions. Write your	n paper	ſ.						-		

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Some questions must be answered with a cross in a box (\boxtimes) . If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes) .

Information for Candidates

Calculators may be used.

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.

The total mark for this paper is 100. The marks for parts of questions are shown in round brackets: e.g. (2).

This paper has 5 questions. All blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English. In calculations, show **all** the steps in your working.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

 ${\stackrel{\rm Printer's\ Log.\ No.}{N29654A}}_{{\rm W850/U7540/57570}}{\stackrel{\rm S/5/5/4600}{5/5/5/4600}}$

Turn over

Total

Answer ALL the questions.

- 1. This question is about force and acceleration.
 - (a) The picture shows a small jet plane which can carry six people.

When taking off fully loaded the mass of the plane is $2560 \, \text{kg}$. The two jet engines can exert a total thrust force of $8000 \, \text{N}$ and the friction force between the wheels and the ground is $340 \, \text{N}$. Both forces remain constant at these values during take off.

(1)	Calculate the acceleration of the plane as it starts to move.
	(3)
(ii)	Explain why the acceleration gets smaller as the plane speeds up.
	(2)
	The average acceleration during take off is 2.2m/s^2 . Calculate the time the plane will take to reach its take off speed of 55m/s .
	(2)

(2)

(iii)) When this arrangement is used, the graph obtained is shown b	elow.
(iii)	Acceleration $\left/\frac{m}{s^2}\right $	elow.
(iii)	Acceleration $\left/\frac{m}{s^2}\right $	pelow.
(iii)	Acceleration $\left/\frac{m}{s^2}\right $	-
(iii)	Acceleration $\left/\frac{m}{s^2}\right $ 0 Force / N	-
(iii)	Acceleration $\left/\frac{m}{s^2}\right $ 0 Force / N	-

(iv) Describe how you could adjust the arrangement so that the graph produced from the new results would pass through the origin.	Leave blank
(2)	Q1
(Total 20 marks)	

(3)

2. This question is about thermal (heat) energy, density and the expansion of gases.

The picture shows a cylindrical balloon made from very thin black plastic.

(a)	(1)	of air trapped inside the balloon. [Density of air at $15 ^{\circ}\text{C} = 1.2 \text{kg/m}^{3}$]
		(3)
	(ii)	If the temperature of the air trapped in the balloon is increased from 15° C to 54° C, show that the new volume of the air trapped in the balloon will be about 8m^3 . (Assume that the pressure and the mass of the trapped air remain constant.)

	Density
	Weight
	(2)
	en placed in sunlight the air trapped in the balloon heats up and the balloon ands.
(i)	Name the process by which the Sun transfers heat energy to the outside surface of the balloon.
	(1)
(ii)	Name a process by which heat energy is transferred from the outside surface of
(11)	the balloon to the air trapped inside the balloon.
(II <i>)</i>	the balloon to the air trapped inside the balloon. (1)
` ^	
` ^	(1) Explain in terms of air molecules why the balloon expands when the air trapped
` ^	(1) Explain in terms of air molecules why the balloon expands when the air trapped
` ^	(1) Explain in terms of air molecules why the balloon expands when the air trapped

Leave blank

(c) The air-filled balloon experiences a vertical upward force called upthrust. The table below shows how the upthrust on the balloon varies with temperature.

Upthrust on balloon / N	95.2	96.8	98.5	100.1	101.8	103.4	105.1	106.7
Temperature of trapped air / °C	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0

(i) On the grid opposite, plot a graph of Upthrust on balloon (y-axis) against Temperature of trapped air (x-axis). The scale for the Upthrust axis has been drawn for you and the Temperature axis has been started at 15 °C. Choose a sensible scale for the temperature axis that makes full use of the grid. Draw a straight line through the points.

(5)

ii)	Use your graph to find the temperature at which the upthrust equals 101 N.	
		(1)
iii)	On the grid show clearly how you used the graph to obtain your answer.	(1)
iv)	The total weight of the balloon and the trapped air is 101 N. State why the ball will accelerate upwards when the temperature of the trapped air is 50 °C.	loon

Q2

(Total 20 marks)

(1)

Leave blank

3. This question is about light.

(a) The diagram shows a ray of light in air going towards glass. The normal at the point of incidence is drawn as a dotted line. Two resulting rays **A** and **B** are shown.

Air

Glass

Explain the direction of ray A .
(2)
Explain the direction of ray \mathbf{B} .

 \mathbf{B}

(1)

(iii) Which is brighter, ray **A** or ray **B**? Put a cross (⋈) in the correct box.

 \mathbf{A}

Leave blank

(b) The diagram shows a mirror in a car set for daytime and for night-time driving.

For both settings, light from a car behind the driver strikes the mirror and goes towards the driver's eye at C.

(1)	Add arrows to both diagrams to show the directions of all the rays of light.	(1)
(ii)	Explain why the back of the mirror is silvered.	

(1)

(iii) Give two reasons why it would not be a good idea for the driver's eye to be placed at $\bf D$ for night-time driving.

1	 									
_										
2	 									

(2)

(c) A student experimented with a glass block of similar shape to the mirror. The block was not silvered. The rays are shown.

(i)	Calculate the refractive index of the glass.
	(2)
(ii)	State what is happening at E .
	(1)
(iii)	Calculate the least possible value for angle x .
(111)	cureulate the reast possible value for angle w.
<i>(</i> ;)	(2)
(1V)	Explain your answer to part (iii).
	(1)

12

block. Your answer should include a labelled diagram and the method used for this experiment.	(d)	Describe an experiment to find the refractive index of glass using a rectangular glass	Leave blank
		block. Your answer should include a labelled diagram and the method used for this	
		(5)	Q3
(Total 20 marks)		(Total 20 marks)	

- (b) A Radioactive Thermoelectric Generator (RTG) is a device in which heat is released by the radioactive decay of plutonium (Pu-238). The RTG can be used as a power source in satellites and space probes. Plutonium-238 decays by emitting an alpha particle to form an isotope of uranium. The half-life of plutonium-238 is 88 years.
 - (i) Complete the decay equation shown below.

$$Pu \rightarrow \dots \alpha + \dots Q$$
(4)

(ii) How long does it take for the amount of plutonium-238 in a material to reduce to one-quarter?

(2)

(iii) State the energy conversions that take place in the RTG by completing the boxes.

(c) The RTG has an outer casing of aluminium.

Explain why aluminium is a suitable material to use from a safety point of view.

(2)

(i)	
	supply a 5.0 W lamp for 4 hours.
	(3)
(ii)	Why will the RTG battery be able to supply energy to the lamp for longer than 4 hours?
	(2)
	(2) (Total 20 marks)

Leave blank

5. This question is about the vibration of wires and the design of an experiment.

The diagram shows an arrangement for investigating the vibrations of a stretched steel wire.

When the wire is plucked at its centre it moves rapidly as shown below. The length of the wire represents half the **wavelength** of the vibration.

A vibrating tuning fork is placed on the wire as shown below. The wire vibrates with an **amplitude** which is too small to see. A small piece of paper is placed on the centre of the wire.

With a tuning fork of a certain **frequency** the wire vibrates with a larger **amplitude** and the paper falls off. This is called **resonance**.

(i)	amplitude
(-)	-
	(1)
(ii)	frequency
(11)	requeries
	(1)
(iii) wavelength
(111)	, wavelength
	(1)
(iv`	resonance?
(,	

(D)		frequency of the tuning fork.				
		cribe how she would investigate the relationship between the length of the wire the frequency of the tuning fork.				
	Your account should include the following.					
	(i)	A factor that needs to remain constant throughout the investigation.				
		(1)				
	(ii)	A list of three items of equipment needed to carry out the investigation.				
		1				
		2				
		3(3)				
		A description of the method she would use.				
		(6)				

	(iv)	A table for recording results, showing the column headings.	
	(')	<i>J</i> , <i>J</i>	
(a)	Pal	ow is a skatab of the results of the investigation. I abol the aves	(2)
(6)	Del	ow is a sketch of the results of the investigation. Label the axes.	
		0	
	Des	scribe the effect of frequency on length.	
	••••		
	••••		(1)
(d)	(i)	On the axis below sketch how the speed of the wave in the wire deperfrequency.	ends on the
		Speed of	
		wave	
		Frequency	(1)
	(ii)	Explain your sketch.	
			(1)

END

