London Examinations
GCE Ordinary Level

London Examinations Ordinary Level GCE in

Physics (7540)

January 2004

London Qualifications is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel International centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our International Customer Relations Unit:
Tel $\quad+442077585656$
Fax +44 2077585959
International@edexcel.org.uk
www.edexcel-international.org

April 2004
Order Code UO 014788
All the material in this publication is copyright
© London Qualifications Limited 2004

PHYSICS 7540, MARK SCHEME

Abbreviations used in the mark scheme

UP	unit penalty
TE	transmits the error
OWTTE	or words to that effect
SF	Significant figures
SFP	Significant figure penalty
MAX	Maximum

PAPER 1

1. (a) use of gradient or $v-u / t$
acceleration $=1.2 \mathrm{~m} / \mathrm{s}^{2} \mathbf{~ U P ~ a c c e p t ~ v a l u e s ~ f r o m ~} 1.1$ to 1.3
(b) $\quad \mathrm{F}=(\mathrm{ma}=) 0.80 \times 1.2 \mathrm{TE}$
$=0.96 \mathrm{~N}$ UP
(c) straight line from 0,0 below first line
from 0,0 heading for $1.0,0.6$ reaching at least $t=0.6 \mathrm{~s}$
(allow 1 square in vertical direction)
dependent on $1^{\text {st }}$ mark
Total 6 marks
2. (a) radiated from flame (to saucepan or aluminium)
conducted through the aluminium/metal
convected through the water
(Any two)
allow correct description of each process
Maximum (2)
(b) plastic is a poor/ non conductor or (good) insulator
does not get hot / stays cool / does not burn hand
(accept reverse argument) independent marks
(c) air (above water) is heated
(1)
(hot fluids) expand or less dense
warm / hot fluids rise
$2^{\text {nd }}$ and $3^{\text {rd }}$ marks may be awarded for convection in water but ignore references to radiation and evaporation

Total 7 marks
3. (a) Pressure $=0.85 \times 1000 \times 10$
$=8500 \mathrm{~Pa}$ or $\mathrm{N} / \mathrm{m}^{2}$ UP
(b) Force $=8500 \times 1.2 \times 10^{-3} \mathrm{TE}$
$=10.2 \mathrm{~N}$
(c) $\quad 10.2 \times y=5 \times 0.2 \mathrm{TE}$
$y=0.098 \mathrm{~m}$
(d) Smaller mass / weight or mass closer to pivot or pad further from
4.
mass
velocity (not speed)
$\mathrm{kg} \mathrm{m} / \mathrm{s}$ or Ns
zero / nought
equal / same size / same magnitude
opposite / negative / reversed direction
first two and last two marks can appear in either order

Total 6 marks

(1)
'microscope not powerful enough' scores zero
(ii) 1×10^{-9} to $1 \times 10^{-10} \mathrm{~m}$ UP
(1)
can be scored in (a)(i)
(b) (i) light from smoke/ash/soot (particles) ignore 'oil'
(not smoke molecules)
Ω
(ii) (moving) air (molecules or particles)
(1)
collision between smoke and air
(1)
unevenly / unequally (hit)
(1)
$2^{\text {nd }}$ and $3^{\text {rd }}$ marks dependent on $1^{\text {st }}$ mark

Total 6 marks
(1)
there are like / similar positive / negative charges
facing each other / near each other / close together
like charges repel
(1)
'random molecular motion of molecules in liquid' scores 1 out of 2
(b) no free charges / electrons / ions
(1)
no flow/ movement / carry of charge/ electrons/ ions
(c) $\quad 0.025 \times 240$ or 0.025×4
$=6 \mathrm{C}$ or As UP correct answer only
7. (a) $V_{1}=2 \times 4$
$=8 \mathrm{~V}$ UP only once for V in (a) and (c)
(b) 2 A UP
(c) $\quad 12-8$ or $\mathrm{R}=12 / 2=6 \Omega, 6-4=2 \Omega, \mathrm{~V}_{2}=2 \times 2$
= 4 V TE 12 - (a) UP
(d) $\quad 4 / 2=2 \Omega$ or $(12 / 2)-4=2 \Omega$ UP

TE (c) / 2
(e) 12×2
(1)

X time (60 or 1)
$=1440 \mathrm{~J}$ UP correct answer with unit only
8. (a) into paper, upward along axis of artery
(b) no moving parts
no rotating coils
less wear and tear / damage (to blood or pump)
won't get stuck
(1)
or relevant disadvantages
(Any 1)

Not

more efficient, cheaper, lighter, automatic, safer, smoother flow of blood, no need to cut open patient or have operation
(c) hard
retain magnetism / form permanent magnets / soft materials lose magnetism / need continuous magnetic effect
do not have to be replaced regularly / can be used for a long time
/ continuous flow of blood is provided
$2^{\text {nd }}$ and $3^{\text {rd }}$ marks dependent on 1st
'hard' and 'soft' mixed up scores 2 out of 3 e.g. 'soft because it retains its magnetism and doesn't have to be replaced'

Total 5 marks
9. (a) Same number of protons / atomic number (different number of neutrons) ignore 'element'
three
(b) correctly circled
(38 is mass number) / 38-18 =20 / proton + neutrons $=$ mass number
(c) $\mathrm{K} /$ potassium / 19
(d) long half life
activity would not be reduced too quickly
could be used for many years
last a long time
steady / continuous count rate
Total 7 marks

10 (a) 2 Hz or /s UP
(b) $6000 / 2$ TE $6000 /(a)$
$=3000 \mathrm{~m}$ UP for m or km once only
(c) distance $=6400 \times 3.14=20096 \mathrm{~km}$
time $=20096000 / 6000 \mathrm{TE}$
$=3349 \mathrm{~s}$ UP
(d) other media encountered e.g. water
amplitude reduced
energy lost
dies out / fades away
not
presence of mountains / slows down / gets reflected or refracted / it's a long way

Total 7 marks

11 (a) correct ray to the screen
any ray from the object that is refracted through the lens and destined for a point on the axis behind the screen
allowed
horizontal ray along axis / a legitimate ray above the axis not touching or cutting the existing ray not allowed
ray cutting the axis before the screen or at the screen / horizontal ray in air (except along axis) / ray below axis in air pointing downwards (i.e. will not cut axis)
(b) Correct statements : first, third and fourth
-1 for 4 ticks
-2 for 5 ticks

PAPER 2

1. (a) (i) dots (roughly) evenly spaced/constant/equal/fixed spaces steady/ uniform/ constant speed
no unbalanced/net/resultant forces or force down ramp equals friction
(not no external forces)
(Independent marks)
(1)
(ii) measures distance between gaps
>4 gaps (ie > 44 mm)
time $=$ correct number of gaps $\times 1 / 50$ (see table below)
speed $=11 /(10 / 50)$ or candidates distance/candidates
time $=55 \mathrm{~cm} / \mathrm{s}$ or $.55 \mathrm{~m} / \mathrm{s}$ or $550 \mathrm{~mm} / \mathrm{s}$ UP

11	23	33	44							
				55	66	77	88	99	110	121
.02	.04	.06	.08	.10	.12	.14	.16	.18	.20	.22

(mark 1) (marks $1 \& 2$) (mark 3)
(iii) state that gaps get bigger and bigger or acceleration
occurs
drawing of tape showing gaps increasing in size from left
(1)
to right (unless labelled start and finish)
(1)
first gap \geq than gaps in original diagram (10 mm or more)
(ii) (Maximum six from the following - 1 mark each):

1. attach newtonmeter/elastic/mass +string to trolley
(1)
2. switch on ticker timer/attach ticker tape
(1)
3. pull trolley using a constant force/extension
(1)
4. calculate/find/measure acceleration (from tape)
(1)
5. repeat for other force(s)
(1)
6. plot a graph of acceleration versus force
7. straight line graph through 0,0 / statement force proportional to acceleration
(iii) repeat readings for each force
(independent of (ii))
(award mark 3. here if not given in (ii) instead of repeat)
8.

Total 20 marks
3.

(a)	(i)	1. dispersion at face $A B$ 2. increased dispersion at face AC (not parallel) (award even if zero dispersion at $A B$) 3. correct deviation at each face (for all rays) 4. correct order of colours (on screen) (Red and violet/blue at edges sufficient) independent marks	(1) (1) (1) (1)
	(ii)	some outside red TE from (i) only if red is at an end if (a)(i)4 not awarded only allow IR at the top end.	(1)
	(iii)	thermometer/thermistor/ thermocouple/ thermopile/camera or film	(1)
		blackened/sensitive to infra red/detects IR	(1)
		reading increased/ resistance lower/ bright area next to red/some effects on film relates to mark 1	(1) 8 marks
(b)	(i)	scale and orientation $0.01=5 \mathrm{~cm}$ on y-axis BUT accept $0.01=4 \mathrm{~cm}$	(1)
		axes labelled with units	(1)
		plots	(2)
		curve (not a series of straight lines joining dots)	(1)
	(ii)	in range 1.538 to 1.539 no unit or else UP	(1)
	(iii)	blue	(1)
		low wavelength end/ higher refractive index dependent on first mark	(1)
			8 marks
(c)	(i)	$\sin 25 / \sin r=\underline{1.536}$	(1)
		$r=15.9^{\circ}-16.0^{\circ}$ no UP	(1)
	(ii)	(angle) greater than critical angle (at AC) or $>40.6{ }^{\circ}$	(1)
		total internally reflected (at AC)	marks

Total 20 marks
4. (a)
(i) $\quad \mathrm{T}$ in range 0.0125-0.013

1/T = $1 / 0.0125$ or 2/0.025 TE
$=80 \mathrm{~Hz}$ or c/s or hz or per sec or /s UP

8 Hz if $\mathrm{T}=0.125 / 83.3 \mathrm{~Hz}$ if $\mathrm{T}=0.012$
(ii) 0.005
(1)
x 4
$=0.02 \mathrm{~mm}$ UP zero displacement can score marks $1 \& 2$
$2^{\text {nd }}$ mark dependent on first
(iii) 250×80 TE or start from scratch (250/T)
$=20000$
(b) (i) higher/greater pitch / sharper / more shrill/higher sound
(ii) Louder / more volume not more sound
(iii) materials collide too loss of contact
forcefully OWTTE
OR
breaks/damages paint between probe and paint or probe
$2^{\text {nd }}$ mark dependent on 1st mark in either case

4 marks

(c) (i) stop beta rays going directly to detector
(ii) Alpha: no
absorbed by paint / won't reach detector / (might) not reach paint
Gamma: no
penetrate paint/material or not affected by different
thicknesses of paint
Yes in either case scores 0/2
(iii) deflected/path changed (in magnetic field)
miss detector or reduce number reaching
detector/paint/material independent marks
(iv) background radiation / count
5. (a) Circuits

(i)	
(ii)	A1
	A2
	A3
	Yes
	No
	(1)
	No
	(1)
	Yes
	Yes
	(1)
	Yes
	(1)

(b) Choice Q

Reason or else current is drawn / extender is on all the time / so
(1)
(1) 2 C current is drawn only when switch is closed NOT because it is a series circuit
$2^{\text {nd }}$ mark dependent on $1^{\text {st }}$
(c) (i) Apparatus rule or measuring tape/scale
(1) 1 A
(ii) Procedure 1. close switch
(1)
2. chime sounds
3. move chime further distance from extender
(1)
4. note (intensity / amplitude of) sound
(1)
5. repeat until chime not heard/stops working
(1)
6. measure distance (between extender and chime)
(1)
7. repeat (the whole experiment) or each reading as they go along
(1) Max 6P

A table of results could score marks 3 to 7

Keep bell ringing and move away from extender can score marks 1 to 5
(iii) Difficulty cannot hear chime at large distance from switch
(1) need second person / need microphone and CRO
(1) 2D
(d) Metal 1. place extender and chime apart
(1)
2. this distance to be less than maximum found in/check it sounds
3. place metal (plate) between extender and chime
4. close switch
5. chime does not sound
metal plate/ box/ piece Maximum 4 marks

5 marks
Total 20 marks
Paper Total 100 marks

PHYSICS 7540, CHIEF EXAMINER'S REPORT

PAPER 1

General Comments

Some very good work was seen on this paper. Many candidates confidently performed the calculations (apart from question 10(c)) but the descriptive parts in questions 2, 5(b)(ii), 6(a)(b) and 8(b)(c) often showed hesitancy and confusion.

Question 1

Most candidates were able to use the slope of the velocity-time graph given in (a) to find the acceleration of a trolley. Some misreading from the graph was masked by the acceptance of values in the range $1.1-1.3 \mathrm{~m} / \mathrm{s}^{2}$.

Almost all candidates were able to calculate the force exerted on the trolley in (b) using $F=m a$ although a significant minority panicked and used $F=m g$. Marks were rarely lost for unit penalties in (a) and (b). $\ln (\mathrm{c})$ a second line had to be added to the graph to represent the motion of a trolley with double the mass acted on by the same force. Practically all candidates knew that the slope would be half of the given line but a significant few were not accurate enough with their line. Sloppy work where lines were not straight did not score either mark in (c).

Question 2

In (a), candidates were asked to name the appropriate means of heat transfer involved in heating a saucepan of water from a flame placed under the saucepan. Any two from 'radiation from the flame', 'conducted through the saucepan' and 'convected through the water' would have scored. Many correct answers were seen together with detailed descriptions of, particularly, convection. This scored a mark but it meant that the candidates sometimes ran out of space to score the second mark.

In (b), candidates were asked to explain why the saucepan handle was made from plastic rather than aluminium. Many knew that plastic was a poor conductor of heat but, for the second mark, repeated themselves by claiming that the plastic did not conduct heat rather than stating that the handle does not get hot.

A description of convection has been asked for regularly in past papers. Candidates do not always realise what is gaining heat (the air above the water surface in this case) and we are still seeing too many statements like 'hot water molecules are lighter or less dense than cold ones,' which gain no marks.

Question 3

This question was very well answered, considering the number of places where candidates could go wrong. In (a) the use of height x density $\mathrm{x} g$ was almost always correctly executed with the correct unit shown.

Similarly the use of $F=p \times A$ in (b). It was particularly pleasing to see the use of the weight of the 0.50 g mass in (c). A mercifully rare error was to see
$1 / 10.2$ incorrectly rounded to 0.09 m from 0.098 m . Part (d) included many sensible suggestions as to how the lever arrangement could be changed so that the water leaks when the level of water in the tank is lowered.

Question 4

Candidates were asked to fill in the gaps in a number of sentences defining linear momentum, giving its unit and describing the recoil of a gun when firing a bullet. This was very well answered by almost everyone, the exception being the fourth gap, 'When a bullet is fired from a stationary gun the total momentum of the gun and the bullet will be'. Candidates produced a range of responses other than the anticipated 'zero', including 'same' and 'equal'.

Question 5

In (a)(i) candidates were asked why water molecules could not be seen through a school microscope. Candidates often spoilt a good answer that started off with reference to their very small size by linking it to a shortcoming of the microscope. It seemed as if some candidates thought the molecules could be seen with a more powerful microscope. Candidates need to be very careful in their choice of words to avoid undoing good work.

In (a)(ii) many of those candidates who quoted a value for the typical size of a molecule were in the correct range. This is another question that is asked regularly but still many candidates leave the answer blank.

In (b)(i), candidates who did not know that the bright specks were smoke particles struggled to score marks in (b)(ii) for explaining why the specks move with random jerky motion. The mark scheme for (b)(ii) was as follows:

air (particles or molecules)	1 mark
collide with smoke (particles)	1 mark
unevenly	1 mark

with the second and third marks dependent on the first.
Common errors arose where candidates were still describing water molecules or collisions with the side of the container.

The third mark was only scored by the strongest candidates. If smoke particles are to move in a jerky manner it must be because they are being hit unevenly. As a general rule, terms given in the stem of a question, like 'randomly', should be avoided when explaining such behaviour.

Question 6

In (a) most candidates offered the explanation that 'like charges repel' and 'unlike charges attract'. The former scored the second mark and the latter was ignored. The first mark required candidates to note that like charges were facing each other but most candidates ignored the position of the charges shown on the diagram. Some candidates noted that a reason for molecules not remaining in the positions shown was random molecular motion of the molecules in the liquid, and this merited one mark here.

In (b), a mark for reference to no free charges and hence no movement of charges was rarely scored. Instead there were numerous references to equal number of charges and neutral molecules.

In (c) the calculation often failed to feature seconds, but 0.025×4 scored one out of two for recall and use of a formula. The resulting answer of 0.1 C was treated as a unit penalty.

Question 7

This question was very well answered with many candidates scoring full marks. Part (b) was almost always correctly answered. Centres should note that transmitted error marks are scored throughout so it is in the best interests of the candidates to show all steps in their working, as recommended on the front of the examination paper.

In (a) a minority of candidates showed $V_{1}=2 \times 4=6 \mathrm{~V}$, scoring the first mark but not the second.
Then in (c), $12-6=6 \mathrm{~V}$ scored the two marks for the potential difference across R_{2}.
In (e) a similar problem to that seen in 6(c) was encountered with units, the three marks in the mark scheme being allocated as follows :

$$
\begin{array}{ll}
12 \times 2 & 1 \text { mark } \\
\times \text { time (either } 60 \text { or } 1) & 1 \text { mark, dependent on } 1^{\text {st }} \text { mark being correct } \\
=1440 \mathrm{~J} & 1 \text { mark, unit penalty (UP) applied }
\end{array}
$$

Question 8

This question was very poorly answered. Despite many correct answers in (a), some candidates were confused by the directions shown in the diagram and showed the blood flowing vertically.

In (b), candidates had no real idea and referred to cheapness or efficiency as an advantage of an electrical pump over a mechanical pump. Accredited answers included : 'no moving parts, no rotating coils, less wear and tear, less damage to body parts or pump' or any relevant disadvantages. Centres should be reassured that candidates' responses are looked at before the mark scheme is finalised and that any relevant response is credited in a case like this.

In (c) a misunderstanding of the terms 'hard' and 'soft' in magnetic terms led to a very common answer that 'soft magnetic materials are used so as not to damage the patient's body'. The more unfortunate 'soft magnetic materials are used so the pump switches off when it is no longer needed' also missed the point. Attention is required here because many candidates are also under the impression that hard magnetic materials produce stronger fields.

Very rarely, a candidate answered correctly but had clearly mixed up the terms 'hard' and 'soft'. Two out of three marks were then awarded.

Question 9

Questions from this part of the syllabus are always well answered and this was no exception.
In (a), most candidates scored the two marks for an explanation of 'isotope' and correctly stating that three isotopes of argon were shown on the diagram. The term 'element' is not acceptable instead of 'proton number' or 'atomic number'. Parts (b) and particularly (c) were well answered.

In (d), candidates must state the obvious that a half-life of 265 years in this context is 'long', because many who did not actually presented an argument showing that they thought it was 'short'.

Question 10

Parts (a) and (b) in which candidates calculated the frequency and wavelength of a wave produced by an earthquake, given its period and speed, was well answered despite a few unit errors.

Part (c) asked for the distance travelled and the time taken when the wave travelled from its epicentre to a point opposite on the Earth's surface. Many candidates forgot to halve their calculated value of circumference and, unfortunately, many did not attempt the calculation for time taken. Many unit errors concerning m and km were seen.

Question 11

The mark in (a) was almost always scored for drawing a ray from a point object through a lens. In (b) candidates had to place three ticks alongside statements indicating the three correct ones out of five. Although a minority of candidates scored all three marks, many scored only two, with the first and fourth statements being most often ticked correctly.

Paper 2

General Comments

The paper contained a good range of questions which challenged the whole range of candidates and differentiated well. The majority of candidates were able to tackle all parts of all questions in the time allowed and presented their ideas reasonably well. There were still some candidates who had obviously only completed part of the course and so scored poorly on particular questions. Many of these would benefit from tackling past papers in advance of the examination to confirm whether they have reached an appropriate level of knowledge and understanding. Questions involving calculations were often answered well although units were often missed off or written incorrectly.

Question 1

The quality of answers often depended on the candidates' examination centre and it was apparent where candidates had not seen experiments involving dynamics trolleys.
(a) (i) Most candidates were able to state that the dots were evenly spaced and that this meant the trolley was travelling at a steady speed. Very few realised that the three marks implied that a third point was expected and only the most able candidates gave a suitable answer. Part (ii) usually scored well but weaker candidates did not take account of the requirement to show all steps in the working and explain their reasoning. Most candidates read the distance correctly but some only measured a single gap and lost one of the measurement marks. Many were unable to determine the time correctly using the number of dots rather than the number of gaps. Those showing their working could still score the two marks for calculating the average speed using their distance divided by their time. Part (iii) revealed whether candidates had a correct understanding of the situation and many thought that the trolley would still travel at a faster, steady speed instead of accelerating. Answers stating that the gaps would get bigger were too vague and did not score the mark allocated for each gap being larger than the previous one.
(b) (i) In some centres candidates had not carried out this procedure and they tried to deal with it by adding more books, showing that they did not understand the requirement for a frictioncompensated runway. They had to name apparatus that would allow them to provide a known force or a series of forces in equal steps. They also had to provide a different item appropriate to the investigation. Part (ii) was often answered well, but some good candidates may have spent more time on this than was justified by the six marks available. The best answers were often given as a list of the steps needed to carry out the procedure in a logical order. Part (iii) simply required candidates to state that for each different force the measurements should be repeated to ensure that they were correct.

Question 2

This question usually scored well where candidates knew the equations and read the question carefully.
(a) Parts (i), (ii) and (iii) scored well although candidates sometimes failed to give the correct unit or to square the speed in the kinetic energy calculation. Part (iii) scored the mark for calculating the difference between the two energies; weaker candidates who got a larger answer for (ii) than (i) frequently subtracted the larger from the smaller rather than checking their calculations. In (iv) many candidates gave a reason for the difference rather than stating what had happened to the energy, showing they had not read through the question before starting their answers.
(b) The introduction to the question used the term 'work done' and this should have pointed candidates to the correct method. Those who used the right method usually obtained the correct answer in (i). In (ii) the question asked for two frictional forces and candidates were expected to give specific answers. Many only wrote 'friction' again and so failed to score. Part (iii) also resulted in some vague answers.
(c) Part (i) was usually well answered but some candidates failed to calculate the weight and to write the answer separately. Part (ii) gave good candidates an opportunity to reason through a novel situation. They were expected to realise that the answer should be in the context of a question on pressure and that, since the weight remained constant, the smaller area would increase the pressure, that this would increase the friction and hence result in a slower speed. Full credit was given to those who reasoned that since the normal contact force would be the same, the friction with the ground and air friction would remain the same and hence the maximum speed would stay the same. Answers that stated the speed would increase did not score.

Question 3

This question often scored well for candidates who read the question carefully.
(a) In (i) and (ii) some candidates revealed a fundamental lack of understanding of the production of a spectrum and did not show correct dispersion and deviation at each of the surfaces. Most could identify the correct colours at each end of the spectrum but many could not indicate where infra-red could be detected. Good candidates could describe a simple procedure to detect infra-red in (iii) but there were many vague answers that failed to score.
(b) The candidates' choice of scale for the graph did not use the area of the paper fully, but smaller scales were allowed provided that candidates could read the value for 475 nm correctly. Centres should warn candidates that a poor choice of scale will continue to be penalised. Some candidates lost marks through missing off units on the graph axes. Centres should advise candidates to copy the table headings onto the graph axes. A few candidates ignored the instruction and started both axes at 0 ; this resulted in a straight line graph which, because the accuracy of plotting could not be checked, usually only scored one mark for labelling the axes. In (ii) and (iii) most candidates read the correct value from the graph and many identified this as blue or violet light.
(c) The calculation of angle was usually well done provided that the correct value of refractive index was used, but some candidates used 1.5 , ignoring the value in the table. A majority of candidates gave the correct answer in (ii) but some lost marks through writing 'total internal refraction' rather than 'total internal reflection'.

Question 4

Answers to this question were variable and again varied between centres.
(a) This section scored well for candidates who knew the required relationships and who showed all steps in their working. Candidates who misread the time period were given credit for a correct calculation using their value. Part (ii) exposed any weakness in the understanding of the difference between displacement and distance. In all parts, marks were often lost through incorrect units.
(b) Most candidates scored well in (i) and (ii) but answers to (iii) were poor. Some candidates stated that the paint would break sooner but only gained credit if they supported it with a reason.
(c) In this section, too many candidates quoted properties of the different types of radiation rather than relating their answers to the novel situation shown. In (i), many immediately linked the lead screen to gamma or cosmic radiation or simply repeated the question, saying it protected the operator rather than preventing the beta radiation travelling directly to the detector. In (ii), answers just talked about alpha being absorbed by paper or gamma escaping, rather than alpha being absorbed by the paint or the 5 cm of air and gamma penetrating the paint and the material. In (iii), many stated that the beta radiation was deflected but failed to give a clear answer that this could prevent the radiation reaching the detector. Many candidates recognised that the reading in (iv) was due to background radiation.

Question 5

This question often scored well where candidates addressed the question asked and laid out their answers in a logical fashion.
(a) This section often scored all four marks although some candidates did not specifically refer to each ammeter. Good candidates often gave their answers in the form of a table that showed their intentions clearly.
(b) Many correctly chose circuit Q, but again there were vague answers or reference to series and parallel circuits.
(c) (i) The question required answers to show that the extender only worked up to a certain distance, so a method of measuring this distance was required.
(ii) Candidates who had thought about the situation gave good answers. Those who wrote their responses as a list rather than continuous prose often scored more marks.
(iii) Few candidates realised that once the distance became large the chime would not be heard and that some method for checking it was required.
(d) This section was often poorly answered. Weaker candidates tried to insert a piece of metal in one of the circuits rather than placing it between circuit Q and the extender. Again, those who wrote their answers as a list of steps in a logical order tended to score more marks.

PHYSICS 7540, GRADE BOUNDARIES

Grade	A	B	C	D	E
Lowest mark for award of grade	68	57	46	41	24

Note: Grade boundaries may vary from year to year and from subject to subject, depending on the demands of the question paper.

Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4LN, UK
Tel + 441623450781
Fax +441623450481
Order Code UO 014788
For more information on Edexcel qualifications please contact us
International Customer Relations Unit,
Stewart House, 32 Russell Square, London, WC1B 5DN, UK
Tel +44 2077585656
Fax +442077585959
International@edexcel.org.uk
www.edexcel-international.org
London Qualifications Limited, Registered in England and Wales No. 4496750
Registered Office: Stewart House, 32 Russell Square, London WC1B 5DN, UK
International

