MARK SCHEME for the October/November 2013 series

5054 PHYSICS

5054/42
Paper 4 (Alternative to Practical), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	5054	42

1 (a) (i) measuring force just before it jumps reading meter and pulling magnet at same time force varies/not constant
(ii) sensible suggestion, e.g.
use of two people explained
pull slowly repeat video newton meter
(b) $5.5 \pm 0.1 \mathrm{~N}$ unit required B1
(c) (i) axes: correct way round, labelled quantity and unit (on y-axis only) B1
scales: linear, not awkward
x-axis: e.g. $2 \mathrm{~cm} \equiv 1 \quad y$-axis: e.g. $2 \mathrm{~cm} \equiv 1 \mathrm{~N}$
B1
points plotted accurately within $1 / 2$ small square neat crosses or small points (in circle) B1
smooth curve of best fit drawn B1
(ii) increasing n decreases F inverse relationship B1
(d) newton meter not sensitive enough
scale too big
no change/same reading
reading/force is too small (for this meter)/no force
B1
(e) (i) $\begin{aligned} & \text { new paper/second expt (thicker) as force smaller (or reverse argument) } \\ & \text { paper that gives } 3.0 \mathrm{~N} \text { force }\end{aligned} \quad$ B1
(ii) more sensitive
more readings
larger values for F
B1
(f) yes + aluminium non-magnetic

B1

2 (a) diagram showing paper and plain mirror
plus incident and reflected rays OR four roughly correct pins B1
2 pins placed on incident ray B1
pins or image (of pins) viewed in/through mirror B1
lines drawn and angles i and r measured to normal
B1

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2013	5054	42

(b) sensible suggestion, e.g.
view bottom of pins
pins vertical
pins far apart, e.g. greater than 5 cm
repeat for different angles/repeat experiment
sharp pencil

3 (a) (i) 0.9 V cao (unit required)
(ii) crocodile clips
tight connections explained, e.g. wrap wire and tape
B1
(iii) same value $/ 0.9 \mathrm{~V}$ and needle to right

B1
(b) sensible suggestion, e.g.
e.m.f./voltage too small
run down quickly/small amount of energy
voltage not steady
current too small
resistance too large
(c) (i) 1.2.7 (V) ecf $3 \times$ (a)(i)

B1
2. correct wiring in series and connected to voltmeter

B1
(ii) 1.0.9 (V) ecf = (a)(i)

B1
2. correct wiring in parallel and connected to voltmeter B1

4 (a) measures all ten together and divides by ten
how stops marbles moving, e.g.
in a groove
between two rulers
5 or more in a line shown touching each other
how ends are marked, e.g.
use of blocks
correct use of set squares

alternative methods:

methods of measuring one marble can score max. 2
measuring all 10 and averaging
technique, e.g.
set squares/blocks with one marble
circumference from:
string/paper rolled round marble then $\div \pi$
ink dot on marble and roll then $\div \pi$
(b) (i) $16.8(0) \mathrm{mm} / 1.68(0) \mathrm{cm}$ cao (unit required) B1
(ii) diameter (of same marble) measured more than once in different direction(s)

B1

