www.xrenepapers.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2013 series

5054 PHYSICS

5054/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5054	22

Section A

1	(a)	(i)	arrow(head) on chain pointing to the right	B1	
		(ii)	vertical arrow downwards and part of arrow touching or within rectangle of lights or direction of arrow in (i) and (ii) correct (by eye)	B1	
	(b)	cor	le given (must have unit of cm:N or cm/N or N:cm or N/cm) rect triangle or rectangle (might be implied) and correct resultant	B1	
		can	mpulsory e.c.f. from (i) or (ii) : i.e. correct diagonal according to didate's (i) and (ii)) didate's (i) and (ii)) descandidate's value ≤ 283 N	B1 B1	[5]
2	(a)	(<i>m</i> 150	=) ρ V or 1000 × 0.150 Ukg	C1 A1	
	(b)	(wh	en full) greater mass or greater momentum	B1	
			re inertia or mass resists change in state of motion small(er) deceleration (for same force)		
		or I	arge(r) force for same deceleration (rate of decrease of momentum for eleration)	B1	
		_	ater kinetic energy re work done in same distance (to stop)	(B1) (B1)	[4]
3	(a)	(i)	(p =) F/A or 12 000/0.048 or 12 000/0.14		
			or (in (ii)) (<i>F</i> =) <i>pA</i> or 2.5 × 105 × 0.14 2.5 × 10 ⁵ Pa	C1 A1	
		(ii)	35 000 N	A1	
	(b)		ospheric pressure or friction (between cylinder and piston/oil) cept bubbles (of air) in oil or viscosity of oil)	B1	
	(c)	(W. 780	D. =) F × d or 12 000 × 0.065 or 35 000 × 0.065 or 2275	C1 A1	
	(d)		uids) incompressible or air spongy or (oil) lubricates the system or (oil)		
			uces friction nore density references, ignore oil compresses less)	B1	[7]

-	. u	<u> </u>				ı upcı	
				GCE O LEVEL – October/November 2013	5054	22	
4	(a)	56°	C (no	ot ° or C°)		B1	
	(b)		=) <i>ml</i> (1) ×	or 110 × 210 10 ⁴ J		C1 A1	
	(c)	(i)	(wax	() is solidifying or freezing		B1	
		(ii)	or b	ecules) form structure/come closer/lose PE onds made/stronger (no e.c.f. from (c)(i)) of molecules const. or replace/release/produce ene	ergy/heat	M1	
			•	esferred to environment/latent heat emitted) e.c.f. from (c)(i))		A1	[6]
5	(a)	two	oppo	sion of energy through a medium or vibration or os site motions (e.g. up and down) or compressions a direction parallel to energy travel/wave direction or	and rarefactions	C1 A1	
	(b)	(i)		2.5 × 10⁴ Hz or 15–25 kHz cao 25 Hz cao		B1 B1	
		(ii)	330/ (can	c/f or 330/either of candidate's frequencies candidate's higher frequency and correctly calculat didate's higher frequency is either the one stated are one that is in fact the higher)		C1 A1	[6]
6	(a)	to th	ne fue	s (move) el or from the pipe or pipe becomes positively chargering protons/+ve charges)	ged	M1 A1	
	(b)	spa igni or curr	rk (ju te the rent fi	mps from the plane) e fuel/explosion/blast rom ground o worker/passenger)		B1 B1 (B1) (B1)	
	(c)	(i)	elec	al an electrical) conductor or has low resistance or trons to flow through it is general: about the conduction property of metals	_	es/ B1	
		(ii)		ge/electrons flow along the cable or (plane/charges is specific: about the conduction in this case)	s) earthed	B1	[6]

Mark Scheme

Syllabus

Paper

Page 3

	Page 4		Mark Scheme	Syllabus	Paper	•
			GCE O LEVEL – October/November 2013	5054	22	
7	(a)	(e.g. 1.2 × a power error (i.e (e.g. 12	x × a time × the unit price 2 × 75/60 × 4 × 21 or 1200 × 75/60 × 4 × 21 or 1.2 × 75/60 × 21 or 5 (hr) or 6 (kW h)) x × a time × the unit price and with maximum of one e. use of 1200 or omits 60 or omits 4) 00 × 75/60 × 4 × 21 or 1.2 × 75 × 4 × 21 or 1.2 × 75 or 7560 or 31.5 (accept 0.21 for 21 and 75.60 and	physics 5/60 × 21 or	C1	
		(if this C	mark is scored so is the previous one) c or \$1.26/1.30 or €/£/Rs 1.26/1.30 etc.	0.0.0)	C1 A1	
	(b)		becomes live or live wire touches the case ws or (large) current to earth or no current in workn	nan	B1	
		(ignore	excess; not "some current")		B1	[5]
8	(a)	lead tong beh	two of: imise time of exposure d clothing (e.g. lead gloves not radioactive suit) gs, manipulator, forceps, tweezers ind protective/lead glass/shield ar film badge		B2	
		(ii) (rad	dioactive emission) random/unpredictable (process) background radiation is random; ignore spontane	ous)	B1	
	(b)	ignore (more)	tion strong(er) or penetrates casing (accept α or β or larger range) weakly/slowly ionising	or both;	B1 B1	
			xplained: harms health or hazardous or dangerous not ionised or sounds all the time (accept doesn't w	vork)	B1	[6]

[Total: 45]

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5054	22

Section B

(a)			C1 A1	[2]
(b)	(i)	1. 6 × 750 × 1.2 or 750 × 1.2 or 900 5400 N m	C1 A1	
		2. mgh or 350 × 10 × 160 or 350 × 10 × 1.6 350 × 10 × 1.6 or 5.6 × 105 5600 J	C1 C1 A1	
	(ii)	or chain lifted also heat produced (ignore in sailors) or work done against friction/drag	B1 B1	
	(iii)	same amount of work done or $P = E/t$ or $P = WD/t$ in less time or power inversely proportional to time (ignore faster rate)	B1 B1	[9]
(c)	any bala plac cloc	y three of the following points made in words: ance ruler (on its own) ce weights on ruler so it balances ckwise and anticlockwise moments equal or net moment zero	B1	[4]
	(b)	(b) (i) (iii) (c) cleary ball plart close	 2. mgh or 350 × 10 × 160 or 350 × 10 × 1.6 350 × 10 × 1.6 or 5.6 × 105 5600 J (ii) friction at axle/boat or drag due to water or chain lifted also heat produced (ignore in sailors) or work done against friction/drag or work done raising chain (iii) same amount of work done or P = E/t or P = WD/t 	force × perpendicular distance or $F \times d_{perp}$ with F and d_{perp} defined A1 (b) (i) 1. $6 \times 750 \times 1.2$ or 750×1.2 or 900 5400Nm C1 5400Nm C1 $350 \times 10 \times 160$ or $350 \times 10 \times 1.6$ $350 \times 10 \times 1.6$ or 5.6×105 5600J C1 5

[Total: 15]

	Page 6)	Mark Scheme	Syllabus	Paper	
				GCE O LEVEL – October/November 2013	5054	22	
10	(a)	(i)		at origin and not horizontal lient (gradually) decreasing (ignore sudden decreas	e)	B1	
			(not	if part of curve above horizontal section) horizontal section (≥ 1 cm) (not if <i>v</i> is shown as ≠ 4	,	B1 B1	
		(ii)		under the graph or count squares under graph ween t = 0 and horizontal section or when speed is c	hanging or	M1	
				ulate equivalent distance to 1 cm ² (after counting squ		A1	[5]
	(b)	(i)		on/air resistance increases (as speed increases) Itant force decreases		B1	
				if driving force decreases)		B1	
		(ii)		resistance increases until) net force becomes zero c ir resistance and driving/forward force are in equilibr		B1	[3]
	(c)	(i)		=) $\frac{1}{2}mv^2$ 5.5 × 10 ⁵ × 40 ² × 10 ⁸ J		C1 C1 A1	
		(ii)	effic	al energy input =) useful energy output efficiency or iency = useful power output/total power input or 4.4 × 10 ⁹ J	× 10 ⁸ /0.40	C1 A1	
		(iii)	e.g. exch	valid examples furnace/boiler/turbines/generator/coils/cooling water nanger/transformer/chimney/waste gases/ smission cables/lines/wires (ignore power station/al	•	t B2	[7]
			a and	simosion cabico, inico, mico (ignoro pomor station/ai	. parto or motor)		۲, ۱

[Total: 15]

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	5054	22

11 (a) work done per (unit) charge/coulomb/C or energy transformed per (unit) charge/ coulomb/C **B1** property of a source (of electricity) or energy transformed to electrical energy per (unit) charge/coulomb/C **B1** [2] **B**1 (b) (i) ammeter in series **B1** [2] (ii) voltmeter in parallel with lamp **or** lamp and ammeter (c) (i) (V =) 2.0 (V)C1 (R =) V/I or 2.0/0.70C1 Α1 $2.9/2.86\Omega$ (i.e. 2 **or** 3 s.f. only) **B1** [4] (ii) (resistance) increases (d) (P =) VI or $(P =) V^2/R$ or I^2R or 12×2.0 or 12×0.70 C1 24 W **A1** [2] M1 (e) (i) emission of electrons from heated metal/named metal/filament/wire **A1** (ii) 1. prevents collision with air (molecules) or prevents deflection or lets electrons/particles reach screen/travel unimpeded **B**1 moves vertically (e.g. up/down/above/below or vertical line) not with horizontal movement due to this voltage **B**1 attracted by positive **or** repelled by negative **or** attracted by one plate and repelled by the other **or** electric field (acts on charge) **B1** [5] [Total: 15]