MARK SCHEME for the May/June 2013 series

5054 PHYSICS

5054/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

Section A

1 (a) travels further in each second / in same time / between images

(b) ($s=$) d/t in any form algebraic or numerical
 C1

$40 \mathrm{~cm} / \mathrm{s} ; 0.4(0) \mathrm{m} / \mathrm{s}$ A1
$\begin{array}{ll}\text { (c) air resistance increases } & \text { B1 } \\ \text { weight constant } & \text { B1 }\end{array}$
(d) forces balance /cancel B1
or no resultant/net force
or resultant of any two forces equal and opposite to third
2 (a) force \times distance
M1
perpendicular distance
(b) (i) $T \times 8$ or 2000×2 seen C1

500 N
A1
$\begin{array}{lll}\text { (ii) } & \text { (two forces) equal (in magnitude) } & \text { B1 } \\ \text { (two forces) opposite (in direction) } & \text { B1 }\end{array}$

3 (a) (i) $(W=) F d$
or 90×0.3
or 90×30
27 J
A1
$\begin{array}{ll}\text { (ii) } & (P=) W / t \\ \text { or } F d / t \\ \text { or } 27(\times 20) / 60 & \text { C1 } \\ \text { or } 27 / 3\end{array}$
9(.0) W
(b) (i) $800 \times 30 / 180$
or $800 / 6$
or 6 seen
or proportionality clearly used
133 or 130 cm
(ii) extension more than 143 cm or (extra) extension $>10 \mathrm{~cm}$ B1 or (some) extension permanent

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

4 (a) gamma rays, visible light, infra-red
(b) (i) microwaves B1
(ii) satellite (receives and) sends/transmits/emits/boosts/amplifies signal B1
(iii) cover a large area over the horizon / only one (transmitter/station) needed etc. B1 or unaffected by tall buildings/hills or no obstructions
5 (a) electrons move onto polythene / rod B1
electrons/negative charge move off cloth B1
(b) (region of space) where force is exerted on a charge B1
(c) (i) unlike charges attract B1
or (rod) attracts +ve charge/ions/particles
repels like charge B1
or (rod) repels -ve charge/ions/electrons/particles(ii) (net) positive charge on water near rodB1
6 (a) (i) 2 to $2.1(\mathrm{~V})$ to any value between 11 and $12(\mathrm{~V})$ B1 or above $2 / 2.1(\mathrm{~V})$
(ii) temperature increases / gets hotter B1
(b) (i) (rate of) flow of charge/electrons B1
(ii) 0.35 A cao B1
(iii) ($I=$) V/R algebraic C1
or $6 / 20$
or $6 / 0.35$
0.3(0) (A)C1or $1 / R_{\mathrm{T}}=1 / 20+1 / 17.1$or ($R_{T}=$) $9.2(\Omega)$ seen
0.65 AA11

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

7 (a) oval/circle through or near A centered on or near $X \quad$ B1 clockwise arrow on line(s) around X and none wrong B1
(b) fields (due to X and Y) cancel or X and Y fields equal and opposite
(c) (i) to the left or towards X/A/B
(ii) current (in wire Y) and (magnetic) field (caused by other wire) or two (magnetic) fields interact

8 EITHER

(a) steel / magnadur / alnico / magnetite
(b) (i) mention of cutting (lines of) magnetic field / change in (magnetic) flux M1
great(est) rate of c
or fast(est) cutting
or other explanation involving time
(ii) vertical/upright B1 or turned through 90° or normal to (magnetic) field
OR
(a) NOT (gate) or inverter B1
(b) 1,0 B1
(c) (i) (voltage across R_{1}) becomes 0/low B1
(ii) decrease any of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$ B1

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

Section B

9 (a) (air) molecules hit walls / liquid (surface) B1
(air) molecules move fast(er) /great(er) kinetic energy \quad B1
(air) molecules hit more often/more frequently/greater rate / harder / more force
B1 or (liquid) molecules evaporate
(b) (i) (flask) in (pure) melting ice (and water)
(flask) in (pure) boiling water / above boiling water (at one atmosphere)
(ii) thin(ner) tube
or large (r) flask
or more air/less liquid
or use liquid that expands more (1 mark for each)B2
(iii) divisions not equally spaced or scale not uniform/not proportional C1

different distance (along scale) for same temperature rise
A1
or different change in temperature for same distance (along scale)
(c) (i) $(M=) d \times V$ in any form or $1200 \times 5 \times 10^{-5} \times 0.15 \quad \mathrm{C} 1$
$9(.0) \times 10^{-3} \mathrm{~kg} ; 0.009(0) \mathrm{kg} \quad \mathrm{A} 1$
(ii) $0.09(0) \mathrm{Necf}(\mathrm{i}) \quad \mathrm{B} 1$
$\begin{array}{ll}\text { (iii) } & (P=) h d g \text { in any form } \\ & \text { or }(P=) F / A \text { in any form }\end{array} \quad$ C1
1800 Pa A1
$\begin{array}{ll}\text { (d) liquids expand less (than air) } & \text { B1 } \\ \text { or great(er) forces between liquid molecules }\end{array}$
[Total: 15]

10 (a) correct normal by eye B1
correct angle of incidence between candidate's normal and incident ray
B1 correct angle of refraction marked between candidate's normal and BC

B1
(b) decrease / change in speed / wavelength

B1

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

(c) $n=\sin i / \sin r$ seen in any form
$(\sin r=) \sin 45^{\circ} / 1.5$
C1
or 0.47 (14) seen
$28(.1)^{\circ}$
C1
(d) refracts less at first face and on correct side of normal

B1
refraction at second face away from normal so that red ray and blue ray are diverging

B1
(e) (i) angle of incidence is 0

B1
or ray along normal/perpendicular to glass
(ii) angle of incidence $/ \theta$ is larger than critical angle

B1 total internal reflection occurs

B1
(iii) reflected ray drawn correctly and emerging without refraction from block

B1
(iv) (eventually) light emerges (into air at Q)

B1
or light refracts (out at Q)
or (weak) refracted ray appears
light emerging at Q coloured in some way
B1
or correct description of movement of reflected ray (as θ decreases)
(b) (i) $(P=) V I$ in any form

C1
or 4.2×12
50(.4) W A1
(ii) $(E=)$ Pt i.e. any power \times any time e.g. $50(.4) \times 8 \quad$ C1

8/60 C1
or 0.13(3) seen
or division by 1000 seen anywhere
0.0067(2) (kWh)

A1
A1

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - May/June 2013	5054	22

(c) (i) molecules escape (from surface/leave water) / become gas or vapour / break bonds
fast(er) moving / high energy/ energetic molecules escape
(ii)

| change | M1 |
| :--- | :--- | explanation \quad A1 \quad wind knocks molecules away \quad| wind / draught / breeze | more chance/possibility of escape/more
 space to escape
 or more molecules come to/near/at
 surface |
| :--- | :--- |
| or larger surface area | fewer molecules return/from air |
| or decrease humidity / drier air | fewer air molecules to hit during escape |
| or decrease atmospheric pressure | |

(iii) evaporation occurs at surface and boiling inside liquid/bubbles evaporation occurs at any temperature (accept room temperature) and boiling occurs at boiling point $/ 100^{\circ} \mathrm{C} /$ fixed / specific temperature evaporation increased by draughts/higher temp/more area and boiling is not OR increase in pressure stops boiling but only reduces evaporation any two
(d) water heats air (by conduction)
or water loses heat/energy (to cup or air)
or air gains heat/energy (from water)
hot / heated air / particles rise
or cold air / particles sink
or hot air is less dense
or cold air is more dense
[Total: 15]

