MARK SCHEME for the October/November 2007 question paper

5054 PHYSICS

5054/02
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2007	5054	2

1 unit penalty per question, no sig. fig penalty throughout paper.

Section A

1 (a) parachute opens or speed drops from (50 to $5 \mathrm{~m} / \mathrm{s}$) or decelerates (e.g. uniformly) and \quad B1
(b) accelerates or speed increases (not increasing acceleration) B1
acceleration decreases (to 0) or speed becomes constant B1
(c) forces balance/cancel or no resultant or equal and opposite (not just forces equal) B1 weight/gravity and air resistance/drag mentioned (not upthrust/friction) B1
(d) (d=) st or $\mathrm{s}=\mathrm{d} / \mathrm{t}$ or any speed x any time or area under graph C1 150 m A1

2 (a) (i) take reading of liquid before rock placed in or pour in a known/specified volume \quad B1 B1
(ii) will not fit in or volume too large B1
(b) $\begin{array}{ll}(\mathrm{d}=) \mathrm{m} / \mathrm{v} \text { or } 101 / 22 & \text { C1 } \\ 4.59 \mathrm{~g} / \mathrm{cm}^{3} & \text { A1 }\end{array}$ 等
(c) C
mass/volume or density different or mass not proportional to volume B1 B1

3 (a) (i) geothermal B1
(ii) will not run out or infinite or being replaced (not can be used again/recycled) B1
(b) (i) $\quad(E=) \mathrm{mcT}$ or $1000 \times 4200 \times 80$ or whole equation rearranged $\quad \mathrm{C} 1$ $3.36 \times 10^{8} \mathrm{~J}$
(ii) $(E=) \mathrm{mL}$ or $100 \times 2.3 \times 10^{6}$ or whole equation rearranged C1 $2.3 \times 10^{8} \mathrm{~J}$

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2007	5054	2

4 (a) good absorber (not good absorber and emitter) (not attracts) B1 radiation or infra red (not heat) B1
(b) hot water rises (not heat rises) B1
by convection (currents) or density explanation B1
(c) (i) reduce/avoid/prevent loss of heat B1
(ii) cover/wrap in lagging/any sensible material (not wood/insulation, acc. plastic tank) B1
5 (a) (i) atoms vibrate/move back and forth/to and fro (accept particles/molecules) M1 atoms hit neighbours or pass on heat/energy to neighbour (not vibrations) A1(ii) atoms take up more space/further apart/larger vibrations (not atoms larger)B1
(b) atoms move throughout (liquid) or not in fixed places or arrangement irregular or broken bonds (e.g. atoms move faster) B1
atoms move at random/further apart (e.g. fixed volume/variable container shape etc.) B1
6 (a) cone/molecules vibrate B1molecules (vibrate) longitudinally/back and forward (in direction of sound)or compressions and rarefactions mentioned (e.g. longitudinal waves)B1
(b) (i) a number from 18,000 to $22,000 \mathrm{~Hz}$ B1
(ii) ($\mathrm{v}=$) $\mathrm{f} \lambda$ algebraic or numerical using 20 Hz or candidate's (i) 17 m C1 A1

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2007	5054	2

7 (a) (i) steel
B1
(ii) rod inside (coil) with current on (at some stage)
(b) (i) (soft) iron accept Mumetal or any other soft magnetic material B1
(ii) all lines directly join from left to right and top line goes down and bottom line up M1 no lines inside box and no lines cross/touch

8 EITHER

any regular wave drawn (at least one complete wave)

(a) water conducts/completes (LH) circuit
 B1

(small) current into (base of) transistor or $\mathrm{V}_{\mathrm{BE}}>0.6 \mathrm{~V}$ B1
switches transistor on or (large) current from collector to emitter or in lamp B1(lamp switches on alone 0)
(b) any sensible suggestion, e.g., warning of rain (not water level for the blind, not automatic pump/windscreen wipers etc.)

Section B

9 (a) (i) (acc $=)(\mathrm{v}-\mathrm{u}) / \mathrm{t} \quad \mathrm{C1}$
14/3
$4.7 \mathrm{~m} / \mathrm{s}^{2} \quad$ (penalise halving to $2.35 \mathrm{~m} / \mathrm{s}^{2}$, accept 2 or more sig figs not fractions)
(ii) $\mathrm{F}=\mathrm{ma}$ or 5 x (i) C 1 23 N (penalise second halving to 5.75 N , ecf (i) acc. 2 or more sig figs not fractions) A1
(iii) longer time of impact/slows down ball gradually/stops the ball more slowly B1 less acceleration
(b) (i) force / area or F/A (acc. force on unit area not force on an area; $\mathrm{N} / \mathrm{m}^{2}$) B1
(ii) larger area B1
smaller force
B1
(c) (i) $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ or $\mathrm{PV}=$ constant
$1.4 \times 10^{7} \times 600=\mathrm{P} \times 30000$ or $1.4 \times 10^{7} \times 600 / 30000$
280000 Pa
(ii) molecules hit sides (of cylinder) (not each other) $\quad \mathrm{B} 1$ molecules leave cylinder or fewer in cylinder or enter air bag B1

(ii) larger area	B1
smaller force	B1

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL - October/November 2007	5054	2

10 (a) electrical circuit containing cell/source, ammeter/lamp/bell and component under test or charged gold-leaf electroscope and component or other sensible apparatus M1
one correct observation A1
named conductor (any metal/carbon/graphite accept water) B1
named insulator (e.g. plastic accept paper and wood) B1
(b) (i) voltage/current or V / I not volts/amps B1
(ii) resistance increases at higher p.d. (not resistance increases) B1
(iii) (filament) lamp/bulb or PTC thermisitor (not metal conductor) B1
(iv) temperature changes C1
higher current/voltage produces higher temperatures A1
(c) (i) 1.0A both for A_{1} and A_{4} B1
(ii) (V=) IR in any form or 20×0.4 C1
8(.0) V A1
(iii) 8 V or same as (ii) B1
(iv) (ii) / 0.6 C1
13Ω (accept 2 or more sig figs or recurring decimal not fractions) A1
11 (a) (i) (as it enters) bends towards normal B1
(as it leaves) bends away from the normal B1
(ii) speed and wavelength change C1
speed and wavelength decrease A1
frequency unaltered B1
(iii) $\sin (\mathrm{i}) / \sin (\mathrm{r})$ C1
$\sin 40^{\circ} / \sin 25^{\circ}$ C1
1.5(2) (penalise ${ }^{\circ}$, accept 2 or more sig figs; $\mathbf{1 . 5}$ alone with no working B1) A1
(b) Mark (i) and (ii) separately unless specifically referred to (i) in (ii)
(i) Words: distance between (principal) focus/focal point (not F) and lens M1
centre of lens A1
Diagram: F/(principal) focus/focal point marked and lens marked/curved faces/triangles and correct arrow of some sort M1
$\mathrm{f} / \mathrm{FL} / \mathrm{fl} /$ focal length marked and arrow from centre of lens to F A1
(ii) diagram showing object, lens and one correct ray M1
second correct ray M1
correct image shown ($1 / 2<\mathrm{h}<1$) A1
(iii) smaller / de-magnified / e.c.f (ii) B1
upside down B1

